Neutrophil extracellular traps (NETs) are part of the innate immune system and are pathogenic in SLE. We therefore investigated 56 lupus patients who met at least 4 SLE criteria. Results were compared to 20 age, sex, and race matched healthy controls. We found that curli/eDNA induced more NETs in SLE PMNs compared to healthy controls. In SLE, patients who were high inducers of NETs triggered by curli/eDNA complexes were also a high inducer of NETs triggered by LPS and PMA. Interestingly, patients who were anti-dsDNA positive made more NETs in response to curli/eDNA complexes. Moreover, we found patients who were anti-dsDNA positive responded highly to curli/eDNA complexes and LPS. We did not observe this in patients who were anti-dsDNA negative. Mechanistically, we found that curli/eDNA induce NETs via NADPH oxidase. Finally, we found patients who had bacteriuria had a higher amount of NET production in response to curli/eDNA complexes and PMA compared to patients with no bacteriuria. We conclude

1) that lupus PMNs are in a chronic inflammatory state. And 2) that curli/eDNA complexes can activate neutrophils and exposure to UPECs could be a mechanism to sustain autoantigens in the form of neutrophil extracellular traps.

Background

Human mutations of the coatomer coat protein alpha subunit (COPA) affect retrograde Golgi-endoplasmic reticulum (ER) protein transport, resulting in endoplasmic reticulum (ER) stress and a clinical syndrome consisting of polyarthritis and diffuse alveolar hemorrhage (DAH) with autoimmune features. Some SLE patients also develop DAH and C57BL/6 (B6) mice with pristane-induced lupus develop monocyte-dependent DAH closely resembling the human disorder. In contrast, BALB/c mice are resistant to DAH. We examined the role of COPA and ER stress in lupus mice with DAH.

Methods

B6 and BALB/c mice were treated with pristane. Expression of *Copa* and markers of ER stress and vascular injury were assessed by quantitative PCR and immunohistochemistry.

Lung tissue was disrupted by Gentle MACS and ER stress was assessed in CD45-CD146+ bone marrow-derived cells and CD45-CD146+ lung microvascular endothelial cells by flow cytometry. COPA transcripts were quantified in peripheral blood from 54 SLE patients and 22 controls.

Results

DAH in B6 mice was associated with impaired *Copa* mRNA and protein expression and evidence of ER stress (increased Ddit3 and CHOP protein, Hspa5 and BIP protein, and other markers). Although DAH did not develop in BALB/c mice treated with either pristane or the ER stress inducer thapsigargin, DAH with impaired *Copa* expression and evidence of ER stress was induced when BALB/c mice were treated with pristane plus low dose thapsigargin. (BALB/c X B6)F1 mice did not develop DAH or ER stress, suggesting that susceptibility was recessively inherited. Flow cytometry of single cell suspensions of lung tissue revealed increased expression of the ER stress protein BiP in CD45-CD146+ pulmonary endothelial cells and CD45+CD146- myeloid cells from pristane-treated B6 mice and also in CD45- cells from BALB/c mice treated with pristane + thapsigargin. Von Willebrand factor (VWF), a marker of endothelial injury, and the monocyte-attractive chemokine Ccl2 increased in lung from B6 mice with DAH, but not in lung from BALB/c mice treated with pristane (without thapsigargin). These data suggest that pristane- induced ER stress and impaired Copa expression promote lung microvascular injury (indicated by increased VWF expression) and the production of monocyte-attractive chemokines, such as Ccl2. Copa expression also was low in SLE patients with interstitial lung disease or nephritis, suggesting that increased susceptibility to ER stress and impaired retrograde Golgi-to-ER transport also may be associated with a subset of human lupus.

Conclusion

DAH in a mouse lupus model appears to be initiated by genetically-regulated susceptibility of the lung microvasculature endothelium to pristane-induced injury, resulting in an ER stress response and culminating in a monocyte-dependent inflammatory response. Lupus-associated DAH in mice and possibly humans may represent an acquired form of COPA syndrome.

Acknowledgments

This work was supported by the National Institutes of Health (NIAMS) grant number R01-AR44731.

Abstracts

1003 IMPAIRED INTRACELLULAR PROTEIN TRANSPORT AND AN ENDOTHelial STRESS RESPONSE REMINISCENT OF COPA SYNDROME IN SLE-ASSOCIATED DIFFUSE ALVEOLAR HEMORRHAGE

Haoyang Zhuang, Erin Hudson, Shuhtong Han, Rawad Daniel Arja, Li Lu, Westley Reeves*. Division of Rheumatology, Allergy, and Clinical Immunology, University of Florida, Gainesville, Florida, USA

Background: Human mutations of the coatomer coat protein alpha subunit (COPA) affect retrograde Golgi-to-endoplasmic reticulum (ER) protein transport, resulting in endoplasmic reticulum (ER) stress and a clinical syndrome consisting of polyarthritis and diffuse alveolar hemorrhage (DAH) with autoimmune features. Some SLE patients also develop DAH and C57BL/6 (B6) mice with pristane-induced lupus develop monocyte-dependent DAH closely resembling the human disorder. In contrast, BALB/c mice are resistant to DAH. We examined the role of COPA and ER stress in lupus mice with DAH.

Methods: B6 and BALB/c mice were treated with pristane. Expression of *Copa* and markers of ER stress and vascular injury were assessed by quantitative PCR and immunohistochemistry.

Lung tissue was disrupted by Gentle MACS and ER stress was assessed in CD45+CD146+ bone marrow-derived cells and CD45+CD146+ lung microvascular endothelial cells by flow cytometry. COPA transcripts were quantified in peripheral blood from 54 SLE patients and 22 controls.

Results: DAH in B6 mice was associated with impaired *Copa* mRNA and protein expression and evidence of ER stress (increased *Ddit3* and CHOP protein, *Hspa5* and *Bip* protein, and other markers). Although DAH did not develop in BALB/c mice treated with either pristane or the ER stress inducer thapsigargin, DAH with impaired *Copa* expression and evidence of ER stress was induced when BALB/c mice were treated with pristane plus low dose thapsigargin. (BALB/c X B6)F1 mice did not develop DAH or ER stress, suggesting that susceptibility was recessively inherited. Flow cytometry of single cell suspensions of lung tissue revealed increased expression of the ER stress protein BiP in CD45+CD146+ pulmonary endothelial cells and CD45+CD146- myeloid cells from pristane-treated B6 mice and also in CD45- cells from BALB/c mice treated with pristane + thapsigargin. Von Willebrand factor (VWF), a marker of endothelial injury, and the monocyte-attractive chemokine Ccl2 increased in lung from B6 mice with DAH, but not in lung from BALB/c mice treated with pristane (without thapsigargin). These data suggest that pristane-induced ER stress and impaired Copa expression promote lung microvascular injury (indicated by increased VWF expression) and the production of monocyte-attractive chemokines, such as Ccl2. Copa expression also was low in SLE patients with interstitial lung disease or nephritis, suggesting that increased susceptibility to ER stress and impaired retrograde Golgi-to-ER transport also may be associated with a subset of human lupus.

Conclusion: DAH in a mouse lupus model appears to be initiated by genetically-regulated susceptibility of the lung microvasculature endothelium to pristane-induced injury, resulting in an ER stress response and culminating in a monocyte-dependent inflammatory response. Lupus-associated DAH in mice and possibly humans may represent an acquired form of COPA syndrome.

Acknowledgments: This work was supported by the National Institutes of Health (NIAMS) grant number R01-AR44731.

1004 ALTERED ERα LOCALIZATION DIFFERENTIALLY MODULATES IMMUNE CELL SUBSETS

Cameron Leyers, Jena Wirth, Melissa Cunningham. 1Department of Microbiology and Immunology, Graduate Studies, Medical University of South Carolina, Charleston SC 29407; 2Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston SC 29407

Background: Estrogen is anti- or pro-inflammatory depending on milieu and plays a role in the increased incidence of lupus in reproductive age women. Estrogen’s pleiotropic effects are in part due to estrogen receptors (ER) and their variants that localize to different regions in the cell. To understand the role of ERα localization in immune responses, we investigated the effects of altered ERα localization on Toll Like Receptor (TLR7)-stimulated endpoints, often dysregulated in lupus.

Methods: Membrane-only ERα (MOER) or Nuclear-only ERα (NOER) mice were used to isolate and culture spleen cells, ex vivo bone marrow (BM), and BM-DCs. Cells were phenotyped...