Gut microbial dysbiosis has been reported in patients with lupus. Results obtained with mouse models suggest that dysbiosis contributes to lupus pathogenesis through the pathogens that induce inflammation by translocating out of the gut and/or producing proinflammatory metabolites. We and others have shown that fecal microbiota transfers (FMT) from lupus-prone mice induce autoantibodies and immune activation in non-autoimmune mice. On the other hand, we have shown that the production of autoantibodies and associated expansion of follicular T (Tfh) cells and germinal center (GC) B cells can be eliminated by treating lupus-prone mice with 2-deoxy-D-glucose (2DG), a glycolysis inhibitor. Here, we investigated the effect of 2DG on the fecal microbiome in two models of lupus with different etiologies, the (NZB × NZW) F1 and (NZW × BXSB)F1 mice.

Anti-dsDNA IgG-positive (NZB × NZW)F1 and (NZW × BXSB)F1 mice were treated with 2DG. The composition of their fecal microbiome was determined by 16S rDNA sequencing and their metabolome by LC-MS analysis, and compared to age-matched controls. Fecal samples from these mice were used for FMT 3 times per week in pre-autoimmune lupus-prone mice of the same strain that were pre-treated with antibiotics 2 weeks. FMT lasted for 26 weeks in (NZB × NZW)F1 mice and 9 weeks in (NZW × BXSB)F1 mice. Age-matched controls were gavaged with PBS. Autoantibodies were measured by ELISA and indirect immunofluorescence. Immunophenotypes were assessed by flow cytometry on PAS-stained sections and immunofluorescence on frozen sections with antibodies to complement C3, IgG2a, F4/80 and CD3.

We showed that a 2DG treatment started in reduced the changes in bacterial populations that occurred as disease developed in control mice in both models. 2DG altered the distribution of fecal metabolites in these treated mice. Next, we investigated the effect of serial FMT from 2DG-treated or control mice into pre-autoimmune lupus-prone mice of the same strain that were pre-treated with antibiotics. In both models, FMT from 2DG-treated mice was protective, with a reduction of anti-dsDNA IgG production, immune cell activation, and renal pathology as compared to FMT from control mice.

Overall, our results demonstrated for the first time that the therapeutic effect of glucose inhibition in lupus is transferable through the gut microbiota. These results suggest that the enhanced glucose metabolism in lupus-prone mice promotes the expansion of pathogenic gut bacteria either directly or indirectly through the immune system that normalized by glucose inhibition.

Lay summary High glucose metabolism sustains the activation of the immune system in lupus. Inhibition of glucose metabolism with a drug called 2DG reverses the production of pathogenic autoantibodies in mice. Here we showed that 2DG also changes the gut microbiome in lupus-prone mice. Further, transfers of fecal bacteria from 2DG-treated lupus mice protected younger mice to develop lupus. The results showed that the gut microbiome contributes significantly to the pathogenic effects of glucose metabolism is lupus, and suggest that the beneficial effect of reducing glucose metabolism includes the restoration of a healthy gut microbiome.
Our recent study has demonstrated induction of regulatory B cells (Bregs) by bacterial DNA in MRL/lpr mice leading to attenuation of SLE. This suggests a regulatory role for the gut bacteria in SLE development. However, the mechanism by which bacterial DNA induces Breg cell differentiation remains to be elucidated. Bacterial DNA contains unmethylated CpG motifs which are recognized by the innate immune molecule, toll-like receptor 9 (TLR9). We therefore hypothesize that gut bacteria-derived DNA induces Bregs in a TLR9-dependent manner, which in turn protects against lupus initiation. To test our hypothesis, TLR9 global knockout (Tlr9^{−/−}) MRL/lpr mice and their heterozygous (Tlr9^{+/−}) littermates were randomized into 2 groups per genotype. Beginning at 4 weeks of age, one group in each genotype received 80 µg E. coli double-stranded DNA (dsDNA) once a week by oral gavage for 4 consecutive weeks, whereas the other group received phosphate buffered saline (PBS) as control. Urine samples were collected before euthanasia whereas blood, spleen, lymph nodes, and kidneys were collected and processed following euthanasia at 15 weeks of age. In vitro culture treatment with bacterial DNA was used to investigate a TLR9-dependent, B cell-intrinsic or -extrinsic mechanism in Breg cell induction. Our data showed a trend in decrease of proteinuria, as well as sizes of spleen and lymph nodes, with bacterial DNA treatment in Tlr9^{−/−} mice. Interestingly, serum levels of anti-dsDNA IgM, which has been shown to be protective against lupus, were significantly increased in bacterial DNA-treated Tlr9^{−/−} mice, although the pathogenic anti-dsDNA IgG remained unchanged. Additionally, flow cytometry analysis of splenocytes showed an increasing trend in the percentage of interleukin-10 positive (IL-10⁺) Bregs in bacterial DNA-treated Tlr9^{−/−} mice and a concomitant decrease in double negative (DN, or CD4⁺CD8[−]) T cells. In the kidney, bacterial DNA treatment also decreased the percentage of CD45⁺ cells in Tlr9^{−/−} mice. Importantly, all bacterial DNA-induced changes observed in Tlr9^{−/−} MRL/lpr mice, including those of proteinuria, organ weight, anti-dsDNA IgM, splenic Bregs, splenic DN T cells and renal CD45⁺ cells, were abrogated in Tlr9^{−/−} MRL/lpr mice. Bacterial DNA treatment of cocultures of B and non-B cells from Tlr9^{−/−} and Tlr9^{+/−} MRL/lpr mice revealed a TLR9-dependent, but B cell-extrinsic, induction of Bregs mediated by IL-6 produced most likely from myeloid cells. Altogether, our study suggests possible attenuation of SLE by gut bacteria-derived DNA through a B cell-extrinsic, TLR9-dependent mechanism that involves the induction of IL-10⁺ Bregs and secretion of potentially protective anti-dsDNA IgM.