Skip to main content

Advertisement

Log in

Insights from Mendelian Interferonopathies: Comparison of CANDLE, SAVI with AGS, Monogenic Lupus

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Autoinflammatory disorders are sterile inflammatory conditions characterized by episodes of early-onset fever and disease-specific patterns of organ inflammation. Recently, the discoveries of monogenic disorders with strong type I interferon (IFN) signatures caused by mutations in proteasome degradation and cytoplasmic RNA and DNA sensing pathways suggest a pathogenic role of IFNs in causing autoinflammatory phenotypes. The IFN response gene signature (IGS) has been associated with systemic lupus erythematosus (SLE) and other autoimmune diseases. In this review, we compare the clinical presentations and pathogenesis of two IFN-mediated autoinflammatory diseases, CANDLE and SAVI, with Aicardi Goutières syndrome (AGS) and monogenic forms of SLE (monoSLE) caused by loss-of-function mutations in complement 1 (C1q) or the DNA nucleases, DNASE1 and DNASE1L3. We outline differences in intracellular signaling pathways that fuel a pathologic type I IFN amplification cycle. While IFN amplification is caused by predominantly innate immune cell dysfunction in SAVI, CANDLE, and AGS, autoantibodies to modified RNA and DNA antigens interact with tissues and immune cells including neutrophils and contribute to IFN upregulation in some SLE patients including monoSLE, thus justifying a grouping of “autoinflammatory” and “autoimmune” interferonopathies. Understanding of the differences in the cellular sources and signaling pathways will guide new drug development and the use of emerging targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kastner DL, Aksentijevich I, Goldbach-Mansky R (2010) Autoinflammatory disease reloaded: a clinical perspective. Cell 140:784–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. de Jesus AA, Canna SW, Liu Y, Goldbach-Mansky R (2015) Molecular mechanisms in genetically defined autoinflammatory diseases: disorders of amplified danger signaling. Annu Rev Immunol 33:823–874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Liu Y, Ramot Y, Torrelo A, Paller AS, Si N, Babay S, Kim PW, Sheikh A, Lee CC, Chen Y, Vera A, et al. (2012) Mutations in proteasome subunit beta type 8 cause chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature with evidence of genetic and phenotypic heterogeneity. Arthritis Rheumatism 64:895–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu Y, Jesus AA, Marrero B, Yang D, Ramsey SE, Montealegre Sanchez GA, Tenbrock K, Wittkowski H, Jones OY, Kuehn HS, et al. (2014) Activated STING in a vascular and pulmonary syndrome. N Engl J Med 371:507–518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Rice GI, Forte GM, Szynkiewicz M, Chase DS, Aeby A, Abdel-Hamid MS, Ackroyd S, Allcock R, Bailey KM, Balottin U, et al. (2013) Assessment of interferon-related biomarkers in Aicardi-Goutieres syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case-control study. Lancet Neurol 12:1159–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J, Banchereau J, Pascual V (2003) Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med 197:711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Baechler EC, Bauer JW, Slattery CA, Ortmann WA, Espe KJ, Novitzke J, Ytterberg SR, Gregersen PK, Behrens TW, Reed AM (2007) An interferon signature in the peripheral blood of dermatomyositis patients is associated with disease activity. Mol Med 13:59–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Crow YJ (2011) Type I interferonopathies: a novel set of inborn errors of immunity. Ann N Y Acad Sci 1238:91–98

    Article  CAS  PubMed  Google Scholar 

  9. Sturfelt G, Truedsson L (2012) Complement in the immunopathogenesis of rheumatic disease. Nat Rev Rheumatol 8:458–468

    Article  CAS  PubMed  Google Scholar 

  10. Yasutomo K, Horiuchi T, Kagami S, Tsukamoto H, Hashimura C, Urushihara M, Kuroda Y (2001) Mutation of DNASE1 in people with systemic lupus erythematosus. Nat Genet 28:313–314

    Article  CAS  PubMed  Google Scholar 

  11. Al-Mayouf SM, Sunker A, Abdwani R, Abrawi SA, Almurshedi F, Alhashmi N, Al Sonbul A, Sewairi W, Qari A, Abdallah E, et al. (2011) Loss-of-function variant in DNASE1L3 causes a familial form of systemic lupus erythematosus. Nat Genet 43:1186–1188

    Article  CAS  PubMed  Google Scholar 

  12. Agarwal AK, Xing C, DeMartino GN, Mizrachi D, Hernandez MD, Sousa AB, Martinez de Villarreal L, dos Santos HG, Garg A (2010) PSMB8 encoding the beta5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am J Hum Gen 87:866–872

    Article  CAS  Google Scholar 

  13. Arima K, Kinoshita A, Mishima H, Kanazawa N, Kaneko T, Mizushima T, Ichinose K, Nakamura H, Tsujino A, Kawakami A, et al. (2011) Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome. Proc Natl Acad Sci U S A 108:14914–14919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kitamura A, Maekawa Y, Uehara H, Izumi K, Kawachi I, Nishizawa M, Toyoshima Y, Takahashi H, Standley DM, Tanaka K, et al. (2011) A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans. J Clin Invest 121:4150–4160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Torrelo A, Patel S, Colmenero I, Gurbindo D, Lendinez F, Hernandez A, Lopez-Robledillo JC, Dadban A, Requena L, Paller AS (2010) Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE) syndrome. J Am Acad Dermatol 62:489–495

    Article  PubMed  Google Scholar 

  16. Cavalcante MP, Brunelli JB, Miranda CC, Novak GV, Malle L, Aikawa NE, Jesus AA, Silva CA (2016) CANDLE syndrome: chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature-a rare case with a novel mutation. Eur J Pediatr 175:735–740

    Article  CAS  PubMed  Google Scholar 

  17. Brehm A, Liu Y, Sheikh A, Marrero B, Omoyinmi E, Zhou Q, Montealegre G, Biancotto A, Reinhardt A, Almeida de Jesus A, et al. (2015) Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J Clin Invest 125:4196–4211

    Article  PubMed  PubMed Central  Google Scholar 

  18. Garg A, Hernandez MD, Sousa AB, Subramanyam L, Martinez de Villarreal L, dos Santos HG, Barboza O (2010) An autosomal recessive syndrome of joint contractures, muscular atrophy, microcytic anemia, and panniculitis-associated lipodystrophy. J Clin Endocrinol Metab 95:E58–E63

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kunimoto K, Kimura A, Uede K, Okuda M, Aoyagi N, Furukawa F, Kanazawa N (2013) A new infant case of Nakajo-Nishimura syndrome with a genetic mutation in the immunoproteasome subunit: an overlapping entity with JMP and CANDLE syndrome related to PSMB8 mutations. Dermatology 227:26–30

    Article  PubMed  Google Scholar 

  20. Ramot Y, Czarnowicki T, Maly A, Navon-Elkan P, Zlotogorski A (2011) Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature syndrome: a case report. Pediatr Dermatol 28:538–541

    Article  PubMed  Google Scholar 

  21. Tanaka M, Miyatani N, Yamada S, Miyashita K, Toyoshima I, Sakuma K, Tanaka K, Yuasa T, Miyatake T, Tsubaki T (1993) Hereditary lipo-muscular atrophy with joint contracture, skin eruptions and hyper-gamma-globulinemia: a new syndrome. Intern Med 32:42–45

    Article  CAS  PubMed  Google Scholar 

  22. McDermott A, Jesus AA, Liu Y, Kim P, Jacks J, Montealegre Sanchez GA, Chen Y, Kannan A, Schnebelen A, Emanuel PD, et al. (2013) A case of proteasome-associated auto-inflammatory syndrome with compound heterozygous mutations. J Am Acad Dermatol 69:e29–e32

    Article  PubMed  PubMed Central  Google Scholar 

  23. Buchbinder D, Montealegre Sanchez GA, Goldbach-Mansky R, Hsieh L, Mahajeran A, Nugent D, Puthenveetil G, Soni A, Stites J, Wacha L, Shulman A (2015) Pulmonary hypertension in two patients with CANDLE syndrome. Clinical Immunology Society 2015 Annual Meeting Houston, Texas

  24. Ciechanover A (2012) Intracellular protein degradation: from a vague idea through the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Neurodegener Dis 10:7–22

    Article  CAS  PubMed  Google Scholar 

  25. Brehm A, Kruger E (2015) Dysfunction in protein clearance by the proteasome: impact on autoinflammatory diseases. Semin Immunopathol 37:323–333

    Article  CAS  PubMed  Google Scholar 

  26. Jeremiah N, Neven B, Gentili M, Callebaut I, Maschalidi S, Stolzenberg MC, Goudin N, Fremond ML, Nitschke P, Molina TJ, et al. (2014) Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J Clin Invest 124:5516–5520

    Article  PubMed  PubMed Central  Google Scholar 

  27. Omoyinmi E, Melo Gomes S, Nanthapisal S, Woo P, Standing A, Eleftheriou D, Klein N, Brogan PA (2015) Stimulator of interferon genes-associated vasculitis of infancy. Arthritis Rheumatol 67:808

    Article  PubMed  Google Scholar 

  28. Munoz J, Rodiere M, Jeremiah N, Rieux-Laucat F, Oojageer A, Rice GI, Rozenberg F, Crow YJ, Bessis D (2015) Stimulator of interferon genes-associated vasculopathy with onset in infancy: a mimic of childhood Granulomatosis with Polyangiitis. JAMA Dermatol 151:872–877

    Article  PubMed  Google Scholar 

  29. Chia J, Eroglu FK, Ozen S, Orhan D, Montealegre-Sanchez G, de Jesus AA, Goldbach-Mansky R, Cowen EW (2016) Failure to thrive, interstitial lung disease, and progressive digital necrosis with onset in infancy. J Am Acad Dermatol 74:186–189

    Article  PubMed  Google Scholar 

  30. Burdette DL, Vance RE (2013) STING and the innate immune response to nucleic acids in the cytosol. Nat Immunol 14:19–26

    Article  CAS  PubMed  Google Scholar 

  31. Keating SE, Baran M, Bowie AG (2011) Cytosolic DNA sensors regulating type I interferon induction. Trends Immunol 32:574–581

    Article  CAS  PubMed  Google Scholar 

  32. Montealegre Sanchez GA, Reinhardt A, Brogan P, Berkun Y, Brown D, Chira P, Gao L, Chapelle D, Plass N, Kim H, et al. (2013) Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperatures (CANDLE): clinical characterization and initial response to Janus Kinase inhibition with Baricitinib. American College of Rheumatology Arthritis and Rheumatism, San Diego, pp. S758–S759

    Google Scholar 

  33. Crow YJ, Chase DS, Lowenstein Schmidt J, Szynkiewicz M, Forte GM, Gornall HL, Oojageer A, Anderson B, Pizzino A, Helman G, et al. (2015) Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. Am J Med Genet A 167A:296–312

    Article  PubMed  CAS  Google Scholar 

  34. Goutieres F, Aicardi J, Barth PG, Lebon P (1998) Aicardi-Goutieres syndrome: an update and results of interferon-alpha studies. Ann Neurol 44:900–907

    Article  CAS  PubMed  Google Scholar 

  35. Orcesi S, La Piana R, Fazzi E (2009) Aicardi-Goutieres syndrome. Br Med Bull 89:183–201

    Article  CAS  PubMed  Google Scholar 

  36. Dale RC, Tang SP, Heckmatt JZ, Tatnall FM (2000) Familial systemic lupus erythematosus and congenital infection-like syndrome. Neuropediatrics 31:155–158

    Article  CAS  PubMed  Google Scholar 

  37. Abdel-Salam GM, El-Kamah GY, Rice GI, El-Darouti M, Gornall H, Szynkiewicz M, Aymard F, Zaki MS, Abdel-Aleem AK, Lebon P, Crow YJ (2010) Chilblains as a diagnostic sign of aicardi-goutieres syndrome. Neuropediatrics 41:18–23

    Article  CAS  PubMed  Google Scholar 

  38. Schmid M, Kreil A, Jessner W, Homoncik M, Datz C, Gangl A, Ferenci P, Peck-Radosavljevic M (2005) Suppression of haematopoiesis during therapy of chronic hepatitis C with different interferon alpha mono and combination therapy regimens. Gut 54:1014–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sanford M, Lyseng-Williamson KA (2011) Subcutaneous recombinant interferon-beta-1a (Rebif(R)): a review of its use in the treatment of relapsing multiple sclerosis. Drugs 71:1865–1891

    Article  CAS  PubMed  Google Scholar 

  40. Ramantani G, Kohlhase J, Hertzberg C, Innes AM, Engel K, Hunger S, Borozdin W, Mah JK, Ungerath K, Walkenhorst H, et al. (2010) Expanding the phenotypic spectrum of lupus erythematosus in Aicardi-Goutieres syndrome. Arthritis Rheum 62:1469–1477

    Article  CAS  PubMed  Google Scholar 

  41. Hochberg MC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40:1725

    Article  CAS  PubMed  Google Scholar 

  42. Okon LG, Werth VP (2013) Cutaneous lupus erythematosus: diagnosis and treatment. Best Pract Res Clin Rheumatol 27:391–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Halla JT, Schrohenloher RE, Volanakis JE (1980) Immune complexes and other laboratory features of pleural effusions: a comparison of rheumatoid arthritis, systemic lupus erythematosus, and other diseases. Annals Int Med 92:748–752

    Article  CAS  Google Scholar 

  44. Jesus AA, Goldbach-Mansky R (2014) IL-1 blockade in autoinflammatory syndromes. Ann Rev Med 65:223–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Beachboard DC, Horner SM (2016) Innate immune evasion strategies of DNA and RNA viruses. Curr Opin Microbiol 32:113–119

    Article  CAS  PubMed  Google Scholar 

  46. Crow YJ, Hayward BE, Parmar R, Robins P, Leitch A, Ali M, Black DN, van Bokhoven H, Brunner HG, Hamel BC, et al. (2006a) Mutations in the gene encoding the 3'-5' DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus. Nat Genet 38:917–920

    Article  CAS  PubMed  Google Scholar 

  47. Crow YJ, Leitch A, Hayward BE, Garner A, Parmar R, Griffith E, Ali M, Semple C, Aicardi J, Babul-Hirji R, et al. (2006b) Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutieres syndrome and mimic congenital viral brain infection. Nat Genet 38:910–916

    Article  CAS  PubMed  Google Scholar 

  48. Rice GI, Bond J, Asipu A, Brunette RL, Manfield IW, Carr IM, Fuller JC, Jackson RM, Lamb T, Briggs TA, et al. (2009) Mutations involved in Aicardi-Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response. Nat Genet 41:829–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rice GI, Kasher PR, Forte GM, Mannion NM, Greenwood SM, Szynkiewicz M, Dickerson JE, Bhaskar SS, Zampini M, Briggs TA, et al. (2012) Mutations in ADAR1 cause Aicardi-Goutieres syndrome associated with a type I interferon signature. Nat Genet 44:1243–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rice GI, del Toro Duany Y, Jenkinson EM, Forte GM, Anderson BH, Ariaudo G, Bader-Meunier B, Baildam EM, Battini R, Beresford MW, et al. (2014) Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat Genet 46:503–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Oda H, Nakagawa K, Abe J, Awaya T, Funabiki M, Hijikata A, Nishikomori R, Funatsuka M, Ohshima Y, Sugawara Y, et al. (2014) Aicardi-Goutieres syndrome is caused by IFIH1 mutations. Am J Hum Genet 95:121–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chowdhury D, Beresford PJ, Zhu P, Zhang D, Sung JS, Demple B, Perrino FW, Lieberman J (2006) The exonuclease TREX1 is in the SET complex and acts in concert with NM23-H1 to degrade DNA during granzyme A-mediated cell death. Mol Cell 23:133–142

    Article  CAS  PubMed  Google Scholar 

  53. Ahn J, Urist M, Prives C (2004) The Chk2 protein kinase. DNA Repair (Amst) 3:1039–1047

    Article  CAS  Google Scholar 

  54. Yang YG, Lindahl T, Barnes DE (2007) Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell 131:873–886

    Article  CAS  PubMed  Google Scholar 

  55. Stetson DB, Ko JS, Heidmann T, Medzhitov R (2008) Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134:587–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gall A, Treuting P, Elkon KB, Loo YM, Gale M Jr, Barber GN, Stetson DB (2012) Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity 36:120–131

  57. Wahba L, Amon JD, Koshland D, Vuica-Ross M (2011) RNase H and multiple RNA biogenesis factors cooperate to prevent RNA:DNA hybrids from generating genome instability. Mol Cell 44:978–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nadel J, Athanasiadou R, Lemetre C, Wijetunga NA, OB P, Sato H, Zhang Z, Jeddeloh J, Montagna C, Golden A, Seoighe C, Greally JM (2015) RNA:DNA hybrids in the human genome have distinctive nucleotide characteristics, chromatin composition, and transcriptional relationships. Epigenetics Chromatin 8:46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Gunther C, Kind B, Reijns MA, Berndt N, Martinez-Bueno M, Wolf C, Tungler V, Chara O, Lee YA, Hubner N, et al. (2015) Defective removal of ribonucleotides from DNA promotes systemic autoimmunity. J Clin Invest 125:413–424

    Article  PubMed  Google Scholar 

  60. Mackenzie KJ, Carroll P, Lettice L, Tarnauskaite Z, Reddy K, Dix F, Revuelta A, Abbondati E, Rigby RE, Rabe B, et al. (2016) Ribonuclease H2 mutations induce a cGAS/STING-dependent innate immune response. EMBO J 35:831–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kretschmer S, Wolf C, Konig N, Staroske W, Guck J, Hausler M, Luksch H, Nguyen LA, Kim B, Alexopoulou D, et al. (2015) SAMHD1 prevents autoimmunity by maintaining genome stability. Ann Rheum Dis 74:e17

    Article  PubMed  CAS  Google Scholar 

  62. Pokatayev V, Hasin N, Chon H, Cerritelli SM, Sakhuja K, Ward JM, Morris HD, Yan N, Crouch RJ (2016) RNase H2 catalytic core Aicardi-Goutieres syndrome-related mutant invokes cGAS-STING innate immune-sensing pathway in mice. J Exp Med 213:329–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sze A, Belgnaoui SM, Olagnier D, Lin R, Hiscott J, van Grevenynghe J (2013) Host restriction factor SAMHD1 limits human T cell leukemia virus type 1 infection of monocytes via STING-mediated apoptosis. Cell Host Microbe 14:422–434

    Article  CAS  PubMed  Google Scholar 

  64. Liddicoat BJ, Piskol R, Chalk AM, Ramaswami G, Higuchi M, Hartner JC, Li JB, Seeburg PH, Walkley CR (2015) RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 349:1115–1120

    Article  CAS  PubMed  Google Scholar 

  65. Mannion NM, Greenwood SM, Young R, Cox S, Brindle J, Read D, Nellaker C, Vesely C, Ponting CP, McLaughlin PJ, et al. (2014) The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep 9:1482–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Akwa Y, Hassett DE, Eloranta ML, Sandberg K, Masliah E, Powell H, Whitton JL, Bloom FE, Campbell IL (1998) Transgenic expression of IFN-alpha in the central nervous system of mice protects against lethal neurotropic viral infection but induces inflammation and neurodegeneration. J Immunol 161:5016–5026

    CAS  PubMed  Google Scholar 

  67. Lee-Kirsch MA, Gong M, Schulz H, Ruschendorf F, Stein A, Pfeiffer C, Ballarini A, Gahr M, Hubner N, Linne M (2006) Familial chilblain lupus, a monogenic form of cutaneous lupus erythematosus, maps to chromosome 3p. Am J Hum Genet 79:731–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee-Kirsch MA, Chowdhury D, Harvey S, Gong M, Senenko L, Engel K, Pfeiffer C, Hollis T, Gahr M, Perrino FW, Lieberman J, Hubner N (2007) A mutation in TREX1 that impairs susceptibility to granzyme A-mediated cell death underlies familial chilblain lupus. J Mol Med (Berl) 85:531–537

    Article  CAS  Google Scholar 

  69. Ravenscroft JC, Suri M, Rice GI, Szynkiewicz M, Crow YJ (2011) Autosomal dominant inheritance of a heterozygous mutation in SAMHD1 causing familial chilblain lupus. Am J Med Genet A 155A:235–237

    Article  PubMed  Google Scholar 

  70. König N, Fiehn C, Wolf C, Schuster M, Costa EC, Tüngler V, Alvarez HA, Chara O, Engel K, Goldbach-Mansky R, Günther C, Lee-Kirsch M (2016) Familial chilblain lupus due to a gain-of-function mutation in STING. Ann Rheum Dis. doi:10.1136/annrheumdis-2016-209841

    Google Scholar 

  71. Gunther C, Berndt N, Wolf C, Lee-Kirsch MA (2015) Familial chilblain lupus due to a novel mutation in the exonuclease III domain of 3' repair exonuclease 1 (TREX1). JAMA Dermatol 151: 426-431. doi:10.1001/jamadermatol.2014.3438

  72. Rice GI, Rodero MP, Crow YJ (2015) Human disease phenotypes associated with mutations in TREX1. J Clin Immunol 35:235–243

    Article  CAS  PubMed  Google Scholar 

  73. Peschke K, Friebe F, Zimmermann N, Wahlicht T, Schumann T, Achleitner M, Berndt N, Luksch H, Behrendt R, Lee-Kirsch MA, Roers A, Gunther C (2014) Deregulated type I IFN response in TREX1-associated familial chilblain lupus. J Invest Dermatol 134:1456–1459

    Article  CAS  PubMed  Google Scholar 

  74. Sugiura K, Takeichi T, Kono M, Ito Y, Ogawa Y, Muro Y, Akiyama M (2012) Severe chilblain lupus is associated with heterozygous missense mutations of catalytic amino acids or their adjacent mutations in the exonuclease domains of 3'-repair exonuclease 1. J Invest Dermatol 132:2855–2857

    Article  CAS  PubMed  Google Scholar 

  75. Richards A, van den Maagdenberg AM, Jen JC, Kavanagh D, Bertram P, Spitzer D, Liszewski MK, Barilla-Labarca ML, Terwindt GM, Kasai Y, et al. (2007) C-terminal truncations in human 3'-5' DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nat Genet 39:1068–1070

    Article  CAS  PubMed  Google Scholar 

  76. Schuh E, Ertl-Wagner B, Lohse P, Wolf W, Mann JF, Lee-Kirsch MA, Hohlfeld R, Kumpfel T (2015) Multiple sclerosis-like lesions and type I interferon signature in a patient with RVCL. Neurol Neuroimmunol Neuroinflamm 2:e55

    Article  PubMed  Google Scholar 

  77. Jang MA, Kim EK, Now H, Nguyen NT, Kim WJ, Yoo JY, Lee J, Jeong YM, Kim CH, Kim OH, et al. (2015) Mutations in DDX58, which encodes RIG-I, cause atypical singleton-Merten syndrome. Am J Hum Genet 96:266–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rutsch F, MacDougall M, Lu C, Buers I, Mamaeva O, Nitschke Y, Rice GI, Erlandsen H, Kehl HG, Thiele H, et al. (2015) A specific IFIH1 gain-of-function mutation causes singleton-Merten syndrome. Am J Hum Genet 96:275–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bursztejn AC, Briggs TA, del Toro Duany Y, Anderson BH, O'Sullivan J, Williams SG, Bodemer C, Fraitag S, Gebhard F, Leheup B, et al. (2015) Unusual cutaneous features associated with a heterozygous gain-of-function mutation in IFIH1: overlap between Aicardi-Goutieres and singleton-Merten syndromes. Br J Dermatol 173:1505–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lintner KE, YL W, Yang Y, Spencer CH, Hauptmann G, Hebert LA, Atkinson JP, Yu CY (2016) Early components of the complement classical activation pathway in human systemic autoimmune diseases. Front Immunol 7:36

    Article  PubMed  PubMed Central  Google Scholar 

  81. Vergani D, Wells L, Larcher VF, Nasaruddin BA, Davies ET, Mieli-Vergani G, Mowat AP (1985) Genetically determined low C4: a predisposing factor to autoimmune chronic active hepatitis. Lancet 2:294–298

    Article  CAS  PubMed  Google Scholar 

  82. Samano ES, Ribeiro Lde M, Gorescu RG, Rocha KC, Grumach AS (2004) Involvement of C4 allotypes in the pathogenesis of human diseases. Rev Hosp Clin Fac Med Sao Paulo 59:138–144

    Article  PubMed  Google Scholar 

  83. Mampaso F, Ecija J, Fogue L, Moneo I, Gallego N, Leyva-Cobian F (1981) Familial C1q deficiency in 3 siblings with glomerulonephritis and Rothmund-Thomson syndrome. Nephron 28:179–185

    Article  CAS  PubMed  Google Scholar 

  84. Topaloglu R, Bakkaloglu A, Slingsby JH, Mihatsch MJ, Pascual M, Norsworthy P, Morley BJ, Saatci U, Schifferli JA, Walport MJ (1996) Molecular basis of hereditary C1q deficiency associated with SLE and IgA nephropathy in a Turkish family. Kidney Int 50:635–642

    Article  CAS  PubMed  Google Scholar 

  85. Santer DM, Hall BE, George TC, Tangsombatvisit S, Liu CL, Arkwright PD, Elkon KB (2010) C1q deficiency leads to the defective suppression of IFN-alpha in response to nucleoprotein containing immune complexes. Journal of immunology 185: 4738-4749. doi:10.4049/jimmunol.1001731

  86. Slingsby JH, Norsworthy P, Pearce G, Vaishnaw AK, Issler H, Morley BJ, Walport MJ (1996) Homozygous hereditary C1q deficiency and systemic lupus erythematosus. A new family and the molecular basis of C1q deficiency in three families. Arthritis Rheum 39:663–670

    Article  CAS  PubMed  Google Scholar 

  87. Vassallo G, Newton RW, Chieng SE, Haeney MR, Shabani A, Arkwright PD (2007) Clinical variability and characteristic autoantibody profile in primary C1q complement deficiency. Rheumatology 46:1612–1614

    Article  CAS  PubMed  Google Scholar 

  88. American College of Rheumatology (2016) Image Library

  89. Malar rash [digital image] (2012) Retrieved from http://www.mollysfund.org/2012/11/the-lupus-butterfly-rash-or-malar-rash-information-you-need-to-know/

  90. Shiau CJ, Abi Daoud MS, Wong SM, Crawford RI (2015) Lymphocytic panniculitis: an algorithmic approach to lymphocytes in subcutaneous tissue. J Clin Pathol 68:954–962

    Article  CAS  PubMed  Google Scholar 

  91. Keane MP, Lynch JP III (2000) Pleuropulmonary manifestations of systemic lupus erythematosus. Thorax 55:159–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rosen A, Casciola-Rosen L (2016) Autoantigens as partners in initiation and propagation of autoimmune rheumatic diseases. Annu Rev Immunol 34:395–420

    Article  PubMed  CAS  Google Scholar 

  93. Mahajan A, Herrmann M, Munoz LE (2016) Clearance deficiency and cell death pathways: a model for the pathogenesis of SLE. Front Immunol 7:35

    Article  PubMed  PubMed Central  Google Scholar 

  94. Botto M (1998) C1q knock-out mice for the study of complement deficiency in autoimmune disease. Exp Clin Immunogenet 15:231–234

    Article  CAS  PubMed  Google Scholar 

  95. Napirei M, Karsunky H, Zevnik B, Stephan H, Mannherz HG, Moroy T (2000) Features of systemic lupus erythematosus in Dnase1-deficient mice. Nat Genet 25:177–181

    Article  CAS  PubMed  Google Scholar 

  96. Fismen S, Mortensen ES, Rekvig OP (2011) Nuclease deficiencies promote end-stage lupus nephritis but not nephritogenic autoimmunity in (NZB x NZW) F1 mice. Immunol Cell Biol 89:90–99

    Article  CAS  PubMed  Google Scholar 

  97. Sisirak V, Sally B, D'Agati V, Martinez-Ortiz W, Ozcakar ZB, David J, Rashidfarrokhi A, Yeste A, Panea C, Chida AS, et al. (2016) Digestion of chromatin in apoptotic cell microparticles prevents autoimmunity. Cell 166:88–101

    Article  CAS  PubMed  Google Scholar 

  98. Gaipl US, Beyer TD, Heyder P, Kuenkele S, Bottcher A, Voll RE, Kalden JR, Herrmann M (2004) Cooperation between C1q and DNase I in the clearance of necrotic cell-derived chromatin. Arthritis Rheum 50:640–649

    Article  CAS  PubMed  Google Scholar 

  99. Casciola-Rosen LA, Anhalt G, Rosen A (1994) Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med 179:1317–1330

    Article  CAS  PubMed  Google Scholar 

  100. Lood C, Blanco LP, Purmalek MM, Carmona-Rivera C, De Ravin SS, Smith CK, Malech HL, Ledbetter JA, Elkon KB, Kaplan MJ (2016) Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med 22:146–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Biermann MH, Veissi S, Maueroder C, Chaurio R, Berens C, Herrmann M, Munoz LE (2014) The role of dead cell clearance in the etiology and pathogenesis of systemic lupus erythematosus: dendritic cells as potential targets. Expert Rev Clin Immunol 10:1151–1164

    Article  CAS  PubMed  Google Scholar 

  102. Fransen JH, Hilbrands LB, Ruben J, Stoffels M, Adema GJ, van der Vlag J, Berden JH (2009a) Mouse dendritic cells matured by ingestion of apoptotic blebs induce T cells to produce interleukin-17. Arthritis Rheum 60:2304–2313

    Article  CAS  PubMed  Google Scholar 

  103. Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195

    Article  CAS  PubMed  Google Scholar 

  104. Fransen JH, Hilbrands LB, Jacobs CW, Adema GJ, Berden JH, Van der Vlag J (2009b) Both early and late apoptotic blebs are taken up by DC and induce IL-6 production. Autoimmunity 42:325–327

    Article  CAS  PubMed  Google Scholar 

  105. Munoz LE, Janko C, Grossmayer GE, Frey B, Voll RE, Kern P, et al. Remnants of secondarily necrotic cells fuel inflammation in systemic lupus erythematosus. Arthritis and rheumatism. 2009;60(6):1733–42

  106. Kono DH, Haraldsson MK, Lawson BR, Pollard KM, Koh YT, Du X, Arnold CN, Baccala R, Silverman GJ, Beutler BA, Theofilopoulos AN (2009) Endosomal TLR signaling is required for anti-nucleic acid and rheumatoid factor autoantibodies in lupus. Proc Natl Acan Sci USA 106:12061–12066

    Article  CAS  Google Scholar 

  107. Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, Marshak-Rothstein A (2002) Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416:603–607. doi:10.1038/416603a

  108. Nangaku M, Couser WG (2005) Mechanisms of immune-deposit formation and the mediation of immune renal injury. Clin Exp Nephrol 9:183–191

    Article  CAS  PubMed  Google Scholar 

  109. Bouts YM, Wolthuis DF, Dirkx MF, Pieterse E, Simons EM, van Boekel AM, Dieker JW, van der Vlag J (2012) Apoptosis and NET formation in the pathogenesis of SLE. Autoimmunity 45:597–601

    Article  CAS  PubMed  Google Scholar 

  110. Ricklin D, Hajishengallis G, Yang K, Lambris JD (2010) Complement: a key system for immune surveillance and homeostasis. Nat Immunol 11:785–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Farrera C, Fadeel B (2013) Macrophage clearance of neutrophil extracellular traps is a silent process. J Immunol 191:2647–2656

    Article  CAS  PubMed  Google Scholar 

  112. Hakkim A, Furnrohr BG, Amann K, Laube B, Abed UA, Brinkmann V, Herrmann M, Voll RE, Zychlinsky A (2010) Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acan Sci USA 107:9813–9818

    Article  CAS  Google Scholar 

  113. Kiefer K, Oropallo MA, Cancro MP, Marshak-Rothstein A (2012) Role of type I interferons in the activation of autoreactive B cells. Immunol Cell Biol 90:498–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Martinelli S, Urosevic M, Daryadel A, Oberholzer PA, Baumann C, Fey MF, Dummer R, Simon HU, Yousefi S (2004) Induction of genes mediating interferon-dependent extracellular trap formation during neutrophil differentiation. J Biol Chem 279:44123–44132

    Article  CAS  PubMed  Google Scholar 

  115. Knight JS, Carmona-Rivera C, Kaplan MJ (2012) Proteins derived from neutrophil extracellular traps may serve as self-antigens and mediate organ damage in autoimmune diseases. Front Immunol 3:380

    Article  PubMed  PubMed Central  Google Scholar 

  116. Trinchieri G (2010) Type I interferon: friend or foe? J Exp Med 207:2053–2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Briggs TA, Rice GI, Daly S, Urquhart J, Gornall H, Bader-Meunier B, Baskar K, Baskar S, Baudouin V, Beresford MW, et al. (2011) Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature. Nat Genet 43:127–131

    Article  CAS  PubMed  Google Scholar 

  118. Lausch E, Janecke A, Bros M, Trojandt S, Alanay Y, De Laet C, Hubner CA, Meinecke P, Nishimura G, Matsuo M, et al. (2011) Genetic deficiency of tartrate-resistant acid phosphatase associated with skeletal dysplasia, cerebral calcifications and autoimmunity. Nat Genet 43:132–137

    Article  CAS  PubMed  Google Scholar 

  119. Eloranta ML, Franck-Larsson K, Lovgren T, Kalamajski S, Ronnblom A, Rubin K, Alm GV, Ronnblom L (2010) Type I interferon system activation and association with disease manifestations in systemic sclerosis. Ann Rheum Dis 69:1396–1402

    Article  CAS  PubMed  Google Scholar 

  120. Higgs BW, Liu Z, White B, Zhu W, White WI, Morehouse C, Brohawn P, Kiener PA, Richman L, Fiorentino D, Greenberg SA, Jallal B, Yao Y (2011) Patients with systemic lupus erythematosus, myositis, rheumatoid arthritis and scleroderma share activation of a common type I interferon pathway. Ann Rheum Dis 70:2029–2036

    Article  CAS  PubMed  Google Scholar 

  121. Cappelletti C, Baggi F, Zolezzi F, Biancolini D, Beretta O, Severa M, Coccia EM, Confalonieri P, Morandi L, Mora M, Mantegazza R, Bernasconi P (2011) Type I interferon and toll-like receptor expression characterizes inflammatory myopathies. Neurology 76:2079–2088

    Article  CAS  PubMed  Google Scholar 

  122. Urbonaviciute V, Furnrohr BG, Meister S, Munoz L, Heyder P, De Marchis F, Bianchi ME, Kirschning C, Wagner H, Manfredi AA, et al. (2008) Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: implications for the pathogenesis of SLE. J Exp Med 205:3007–3018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by the Intramural Research Program of the NIH, NIAID, and NIAMS. The authors would like to thank Dr. Ann Marschuk-Rothstein and Dr. Adriana Almeida de Jesus for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hanna Kim or Raphaela Goldbach-Mansky.

Ethics declarations

Disclosures

HK does not have any disclosures. GMS has received study support from SOBI, Regeneron, and Lilly. RGM has received study support from SOBI, Novartis, Regeneron and Lilly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Sanchez, G.A.M. & Goldbach-Mansky, R. Insights from Mendelian Interferonopathies: Comparison of CANDLE, SAVI with AGS, Monogenic Lupus. J Mol Med 94, 1111–1127 (2016). https://doi.org/10.1007/s00109-016-1465-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-016-1465-5

Keywords

Navigation