Skip to main content

Advertisement

Log in

The pathogenesis and diagnosis of systemic lupus erythematosus: still not resolved

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Systemic lupus erythematosus (SLE) is a systemic autoimmune disease with various clinical manifestations affecting different tissues. A characteristic feature of SLE is the presence of autoantibodies against double-stranded (ds)DNA, histones and nucleosomes, and other chromatin components. SLE is a prototype type III hypersensitivity reaction. Local deposition of anti-nuclear antibodies in complex with released chromatin induces serious inflammatory conditions by activation of the complement system. The severe renal manifestation, lupus nephritis, is classified based on histological findings in renal biopsies. Apoptotic debris, including chromatin, is present in the extracellular matrix and circulation of patients with SLE. This may be due to an aberrant process of apoptosis and/or insufficient clearance of apoptotic cells/chromatin. The non-cleared apoptotic debris may lead to activation of both the innate and adaptive immune systems. In addition, an aberrant presentation of peptides by antigen-presenting cells, disturbed selection processes for lymphocytes, and deregulated lymphocyte responses may be involved in the development of autoimmunity. In the present review, we briefly will summarize current knowledge on the pathogenesis of SLE. We will also critically discuss and challenge central issues that need to be addressed in order to fully understand the pathogenic mechanisms involved in the development of SLE and in order to have an improved diagnosis for SLE. Disappointingly, in our opinion, there are still more questions than answers for the pathogenesis, diagnosis, and treatment of SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Amital H, Heilweil M, Ulmansky R et al (2005) Treatment with a laminin-derived peptide suppresses lupus nephritis. J Immunol 175:5516–5523

    CAS  PubMed  Google Scholar 

  2. Andrzejewski C Jr, Rauch J, Lafer E et al (1981) Antigen-binding diversity and idiotypic cross-reactions among hybridoma autoantibodies to DNA. J Immunol 126:226–231

    CAS  PubMed  Google Scholar 

  3. Arbuckle MR, Mcclain MT, Rubertone MV et al (2003) Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med 349:1526–1533

    CAS  PubMed  Google Scholar 

  4. Ardoin SP, Pisetsky DS (2008) Developments in the scientific understanding of lupus. Arthritis Res Ther 10:218

    PubMed Central  PubMed  Google Scholar 

  5. Ardoin SP, Pisetsky DS (2008) The role of cell death in the pathogenesis of autoimmune disease: HMGB1 and microparticles as intercellular mediators of inflammation. Mod Rheumatol 18:319–326

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Ash Lerner A, Ginsberg Strauss M, Pewzner Jung Y et al (1997) Expression of an anti-DNA-associated VH gene in immunized and autoimmune mice. J Immunol 159:1508–1519

    CAS  PubMed  Google Scholar 

  7. Basnakian AG, Apostolov EO, Yin X et al (2005) Cisplatin nephrotoxicity is mediated by deoxyribonuclease I. J Am Soc Nephrol 16:697–702

    CAS  PubMed  Google Scholar 

  8. Berden JH (2003) Lupus nephritis: consequence of disturbed removal of apoptotic cells? Neth J Med 61:233–238

    CAS  PubMed  Google Scholar 

  9. Berden JH, Licht R, Van Bruggen MC et al (1999) Role of nucleosomes for induction and glomerular binding of autoantibodies in lupus nephritis. Curr Opin Nephrol Hypertens 8:299–306

    CAS  PubMed  Google Scholar 

  10. Boackle SA, Holers VM, Chen X et al (2001) Cr2, a candidate gene in the murine Sle1c lupus susceptibility locus, encodes a dysfunctional protein. Immunity 15:775–785

    CAS  PubMed  Google Scholar 

  11. Bolland S, Yim YS, Tus K et al (2002) Genetic modifiers of systemic lupus erythematosus in FcgammaRIIB(−/−) mice. J Exp Med 195:1167–1174

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Boule MW, Broughton C, Mackay F et al (2004) Toll-like receptor 9-dependent and -independent dendritic cell activation by chromatin-immunoglobulin G complexes. J Exp Med 199:1631–1640

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Bouts YM, Wolthuis DFGJ, Dirkx MFM et al (2012) Apoptosis and NET formation in the pathogenesis of SLE. Autoimmunity 45:597–601

    CAS  PubMed  Google Scholar 

  14. Brigido MM, Stollar BD (1991) Two induced anti-Z-DNA monoclonal antibodies use VH gene segments related to those of anti-DNA autoantibodies. J Immunol 146:2005–2009

    CAS  PubMed  Google Scholar 

  15. Carroll P, Stafford D, Schwartz RS et al (1985) Murine monoclonal anti-DNA autoantibodies bind to endogenous bacteria. J Immunol 135:1086–1090

    CAS  PubMed  Google Scholar 

  16. Casciola-Rosen L, Andrade F, Ulanet D et al (1999) Cleavage by granzyme B is strongly predictive of autoantigen status: Implications for initiation of autoimmunity. J Exp Med 190:815–825

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Casciolarosen LA, Anhalt G, Rosen A (1994) Autoantigens targeted in systemic lupus-erythematosus are clustered in 2 populations of surface-structures on apoptotic keratinocytes. J Exp Med 179:1317–1330

    CAS  Google Scholar 

  18. Choi J, Kim ST, Craft J (2012) The pathogenesis of systemic lupus erythematosus—an update. Curr Opin Immunol 24:651–657

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Dang H, Harbeck RJ (1982) A comparison of anti-DNA antibodies from serum and kidney eluates of NZB x NZW F1 mice. J Clin Lab Immunol 9:139–145

    CAS  PubMed  Google Scholar 

  20. Davies JM (1997) Molecular mimicry: can epitope mimicry induce autoimmune disease? Immunol Cell Biol 75:113–126

    CAS  PubMed  Google Scholar 

  21. Deocharan B, Qing X, Lichauco J et al (2002) Alpha-actinin is a cross-reactive renal target for pathogenic anti-DNA antibodies. J Immunol 168:3072–3078

    CAS  PubMed  Google Scholar 

  22. Desai DD, Krishnan MR, Swindle JT et al (1993) Antigen-specific induction of antibodies against native mammalian DNA in nonautoimmune mice. J Immunol 151:1614–1626

    CAS  PubMed  Google Scholar 

  23. Diamond B, Volpe BT (2012) A model for lupus brain disease. Immunol Rev 248:56–67

    PubMed  Google Scholar 

  24. Dieker JW, Fransen JH, Van Bavel CC et al (2007) Apoptosis-induced acetylation of histones is pathogenic in systemic lupus erythematosus. Arthritis Rheum 56:1921–1933

    CAS  PubMed  Google Scholar 

  25. Dieker JW, Van der Vlag J, Berden JH (2004) Deranged removal of apoptotic cells: its role in the genesis of lupus. Nephrol Dial Transplant 19:282–285

    PubMed  Google Scholar 

  26. Dieker JW, Van der Vlag J, Berden JH (2002) Triggers for anti-chromatin autoantibody production in SLE. Lupus 11:856–864

    CAS  PubMed  Google Scholar 

  27. Doyle HA, Mamula MJ (2005) Posttranslational modifications of self-antigens. Ann N Y Acad Sci 1050:1–9

    CAS  PubMed  Google Scholar 

  28. Ehrenstein MR, Katz DR, Griffiths MH et al (1995) Human IgG anti-DNA antibodies deposit in kidneys and induce proteinuria in SCID mice. Kidney Int 48:705–711

    CAS  PubMed  Google Scholar 

  29. Fairhurst AM, Hwang SH, Wang A et al (2008) Yaa autoimmune phenotypes are conferred by overexpression of TLR7. Eur J Immunol 38:1971–1978

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Fenton K, Fismen S, Hedberg A et al (2009) Anti-dsDNA antibodies promote initiation, and acquired loss of renal Dnase1 promotes progression of lupus nephritis in autoimmune (NZBxNZW)F1 mice. PLoS One 4:e8474

    PubMed Central  PubMed  Google Scholar 

  31. Fenton KA, Tommeras B, Marion TN et al (2010) Pure anti-dsDNA mAbs need chromatin structures to promote glomerular mesangial deposits in BALB/c mice. Autoimmunity 43:179–188

    CAS  PubMed  Google Scholar 

  32. Fismen S, Hedberg A, Fenton K et al (2009) Circulating chromatin-anti-chromatin antibody complexes bind with high affinity to dermo-epidermal structures in murine and human lupus nephritis. Lupus 18:597–607

  33. Fismen S, Thiyagarajan D, Seredkina N et al. (2013) Impact of the tumor necrosis factor receptor-associated protein 1 (Trap1) on renal DNaseI shutdown and on progression of murine and human lupus nephritis. Am J Pathol 182:688--700

  34. Foster MH (2007) T cells and B cells in lupus nephritis. Semin Nephrol 27:47–58

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Fransen JH, Hilbrands LB, Jacobs CW et al (2009) Both early and late apoptotic blebs are taken up by DC and induce IL-6 production. Autoimmunity 42:325–327

    CAS  PubMed  Google Scholar 

  36. Fransen JH, Hilbrands LB, Ruben J et al (2009) Mouse dendritic cells matured by ingestion of apoptotic blebs induce T cells to produce interleukin-17. Arthritis Rheum 60:2304–2313

    CAS  PubMed  Google Scholar 

  37. Fransen JH, Hilbrands LB, Koeter CM, Berden JH, Van der Vlag J. (2009) The role of apoptosis and removal of apoptotic cells in the genesis of systemic lupus erythematosus. Arch Med Sci 5:S466-S477

  38. Gaipl US, Sheriff A, Franz S et al (2006) Inefficient clearance of dying cells and autoreactivity. Curr Top Microbiol Immunol 305:161–176

    CAS  PubMed  Google Scholar 

  39. Garcia-Romo GS, Caielli S, Vega B et al (2011) Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med 3:73ra20

    PubMed Central  PubMed  Google Scholar 

  40. Garrett-Sinha LA, John S, Gaffen SL (2008) IL-17 and the Th17 lineage in systemic lupus erythematosus. Curr Opin Rheumatol 20:519–525

    CAS  PubMed  Google Scholar 

  41. Gilkeson GS, Grudier JP, Karounos DG et al (1989) Induction of anti-double stranded DNA antibodies in normal mice by immunization with bacterial DNA. J Immunol 142:1482–1486

    CAS  PubMed  Google Scholar 

  42. Gilkeson GS, Ruiz P, Howell D et al (1993) Induction of immune-mediated glomerulonephritis in normal mice immunized with bacterial DNA. Clin Immunol Immunopathol 68:283–292

    CAS  PubMed  Google Scholar 

  43. Green MC, Shultz LD (1975) Motheaten, an immunodeficient mutant of the mouse. I. Genetics and pathology. J Hered 66:250–258

    CAS  PubMed  Google Scholar 

  44. Griffith J, Bleyman M, Rauch CA et al (1986) Visualization of the bent helix in kinetoplast DNA by electron microscopy. Cell 46:717–724

    CAS  PubMed  Google Scholar 

  45. Grootscholten C, Van Bruggen MC, Van Der Pijl JW et al (2003) Deposition of nucleosomal antigens (histones and DNA) in the epidermal basement membrane in human lupus nephritis. Arthritis Rheum 48:1355–1362

    CAS  PubMed  Google Scholar 

  46. Guerra SG, Vyse TJ, Cunninghame Graham DS (2012) The genetics of lupus: a functional perspective. Arthritis Res Ther 14:211

    PubMed Central  PubMed  Google Scholar 

  47. Hahn BH (1998) Antibodies to DNA. N Engl J Med 338:1359–1368

    CAS  PubMed  Google Scholar 

  48. Haugbro K, Nossent JC, Winkler T et al (2004) Anti-dsDNA antibodies and disease classification in antinuclear antibody positive patients: the role of analytical diversity. Ann Rheum Dis 63:386–394

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Hedberg A, Fismen S, Fenton KA et al (2011) Heparin exerts a dual effect on murine lupus nephritis by enhancing enzymatic chromatin degradation and preventing chromatin binding in glomerular membranes. Arthritis Rheum 63:1065–1075

    CAS  PubMed  Google Scholar 

  50. Hedberg A, Mortensen ES, Rekvig OP (2011) Chromatin as a target antigen in human and murine lupus nephritis. Arthritis Res Ther 13:214

    PubMed Central  PubMed  Google Scholar 

  51. Herrmann M, Voll RE, Zoller OM et al (1998) Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum 41:1241–1250

    CAS  PubMed  Google Scholar 

  52. Hobson DJ, Wei W, Steinmetz LM et al (2012) RNA polymerase II collision interrupts convergent transcription. Mol Cell 48:365–374

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Huerta PT, Kowal C, Degiorgio LA et al (2006) Immunity and behavior: antibodies alter emotion. Proc Natl Acad Sci U S A 103:678–683

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Isenberg D, Lesavre P (2007) Lupus nephritis: assessing the evidence, considering the future. Lupus 16:210–211

    CAS  PubMed  Google Scholar 

  55. Isenberg DA, Ehrenstein MR, Longhurst C et al (1994) The origin, sequence, structure, and consequences of developing anti-DNA antibodies. A human perspective. Arthritis Rheum 37:169–180

    CAS  PubMed  Google Scholar 

  56. Isenberg DA, Manson JJ, Ehrenstein MR et al (2007) Fifty years of anti-ds DNA antibodies: are we approaching journey's end? Rheumatology (Oxford) 46:1052–1056

    CAS  Google Scholar 

  57. Izui S (1990) Autoimmune accelerating genes, lpr and Yaa, in murine systemic lupus erythematosus. Autoimmunity 6:113–129

    CAS  PubMed  Google Scholar 

  58. Izui S, Kelley VE, Masuda K et al (1984) Induction of various autoantibodies by mutant gene lpr in several strains of mice. J Immunol 133:227–233

    CAS  PubMed  Google Scholar 

  59. Jang YJ, Stollar BD (2003) Anti-DNA antibodies: aspects of structure and pathogenicity. Cell Mol Life Sci 60:309–320

    CAS  PubMed  Google Scholar 

  60. Balow JE, Boumpas DT, Ausin HA (1999) Systemic lupus erythematosus and the kidney. In: Lahiota RG (ed) Systemic lupus erythematosus, 3rd edn. Academic, San Diego, pp 657–685

    Google Scholar 

  61. Kalaaji M, Fenton KA, Mortensen ES et al (2007) Glomerular apoptotic nucleosomes are central target structures for nephritogenic antibodies in human SLE nephritis. Kidney Int 71:664–672

    CAS  PubMed  Google Scholar 

  62. Kalaaji M, Mortensen E, Jorgensen L et al (2006) Nephritogenic lupus antibodies recognize glomerular basement membrane-associated chromatin fragments released from apoptotic intraglomerular cells. Am J Pathol 168:1779–1792

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Kalaaji M, Sturfelt G, Mjelle JE et al (2006) Critical comparative analyses of anti-alpha-actinin and glomerulus-bound antibodies in human and murine lupus nephritis. Arthritis Rheum 54:914–926

    CAS  PubMed  Google Scholar 

  64. Kalsi JK, Martin AC, Hirabayashi Y et al (1996) Functional and modelling studies of the binding of human monoclonal anti-DNA antibodies to DNA. Mol Immunol 33:471–483

    CAS  PubMed  Google Scholar 

  65. Kaplan MJ (2011) Neutrophils in the pathogenesis and manifestations of SLE. Nat Rev Rheumatol 7:691–699

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Krishnan MR, Wang C, Marion TN (2012) Anti-DNA autoantibodies initiate experimental lupus nephritis by binding directly to the glomerular basement membrane in mice. Kidney Int 82:184–192

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Kruse K, Janko C, Urbonaviciute V et al (2010) Inefficient clearance of dying cells in patients with SLE: anti-dsDNA autoantibodies, MFG-E8, HMGB-1 and other players. Apoptosis Int J Program Cell Death 15:1098–1113

    CAS  Google Scholar 

  68. Lafer EM, Rauch J, Andrzejewski C Jr et al (1981) Polyspecific monoclonal lupus autoantibodies reactive with both polynucleotides and phospholipids. J Exp Med 153:897–909

    CAS  PubMed  Google Scholar 

  69. Lande R, Ganguly D, Facchinetti V et al (2011) Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med 3:73ra19

    PubMed Central  PubMed  Google Scholar 

  70. Lefkowith JB, Gilkeson GS (1996) Nephritogenic autoantibodies in lupus: current concepts and continuing controversies. Arthritis Rheum 39:894–903

    CAS  PubMed  Google Scholar 

  71. Lerner J, Ginsberg M, Marion TN et al (1997) Analysis of B/W-DNA 16 V(H) gene expression following DNA-peptide immunization. Lupus 6:328–329

    CAS  PubMed  Google Scholar 

  72. Licht R, Dieker JW, Jacobs CW et al (2004) Decreased phagocytosis of apoptotic cells in diseased SLE mice. J Autoimmun 22:139–145

    CAS  PubMed  Google Scholar 

  73. Liu Z, Davidson A (2012) Taming lupus-a new understanding of pathogenesis is leading to clinical advances. Nat Med 18:871–882

    PubMed Central  PubMed  Google Scholar 

  74. Luijten RKMC, Fritsch-Stork RD, Bijlsma JWJ et al (2013) The use of glucocorticoids in systemic lupus erythematosus. After 60 years still more an art than science. Autoimmun Rev 12:617–628

    CAS  PubMed  Google Scholar 

  75. Khalil M, Spatz L, Diamond B (1999) Anti-DNA antibodies. In: Lahita RG (ed) Systemic lupus erythematosus, 3rd edn. Academic, San Diego, pp 197–217

    Google Scholar 

  76. Madaio MP, Hodder S, Schwartz RS et al (1984) Responsiveness of autoimmune and normal mice to nucleic acid antigens. J Immunol 132:872–876

    CAS  PubMed  Google Scholar 

  77. Mageed RA, Zack DJ (2002) Cross-reactivity and pathogenicity of anti-DNA autoantibodies in systemic lupus erythematosus. Lupus 11:783–786

    CAS  PubMed  Google Scholar 

  78. Mak A, Isenberg DA, Lau CS (2013) Global trends, potential mechanisms and early detection of organ damage in SLE. Nat Rev Rheumatol 9:301–310

    CAS  PubMed  Google Scholar 

  79. Meacock R, Dale N, Harrison MJ (2013) The humanistic and economic burden of systemic lupus erythematosus: a systematic review. Pharmacoeconomics 31:49–61

    PubMed  Google Scholar 

  80. Mjelle JE, Kalaaji M, Rekvig OP (2009) Exposure of chromatin and not high affinity for dsDNA determines the nephritogenic impact of anti-dsDNA antibodies in (NZBxNZW)F1 mice. Autoimmunity 42:104–111

    CAS  PubMed  Google Scholar 

  81. Mjelle JE, Rekvig OP, Fenton KA (2007) Nucleosomes possess a high affinity for glomerular laminin and collagen IV and bind nephritogenic antibodies in murine lupus-like nephritis. Ann Rheum Dis 66:1661–1668

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Moens U, Seternes OM, Hey AW et al (1995) In vivo expression of a single viral DNA-binding protein generates systemic lupus erythematosus-related autoimmunity to double-stranded DNA and histones. Proc Natl Acad Sci U S A 92:12393–12397

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Mortensen ES, Fenton KA, Rekvig OP (2008) Lupus nephritis: the central role of nucleosomes revealed. Am J Pathol 172:275–283

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Mortensen ES, Rekvig OP (2009) Nephritogenic potential of anti-DNA antibodies against necrotic nucleosomes. J Am Soc Nephrol 20:696–704

    CAS  PubMed  Google Scholar 

  85. Mostoslavsky G, Fischel R, Yachimovich N et al (2001) Lupus anti-DNA autoantibodies cross-react with a glomerular structural protein: a case for tissue injury by molecular mimicry. Eur J Immunol 31:1221–1227

    CAS  PubMed  Google Scholar 

  86. Munoz LE, Janko C, Schulze C et al (2010) Autoimmunity and chronic inflammation—two clearance-related steps in the etiopathogenesis of SLE. Autoimmun Rev 10:38–42

    CAS  PubMed  Google Scholar 

  87. Munoz LE, Lauber K, Schiller M et al (2010) The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat Rev Rheumatol 6:280–289

    PubMed  Google Scholar 

  88. Munoz LE, Van Bavel C, Franz S et al (2008) Apoptosis in the pathogenesis of systemic lupus erythematosus. Lupus 17:371–375

    CAS  PubMed  Google Scholar 

  89. Ohteki T, Hessel A, Bachmann MF et al (1999) Identification of a cross-reactive self ligand in virus-mediated autoimmunity. Eur J Immunol 29:2886–2896

    CAS  PubMed  Google Scholar 

  90. Oldstone MB (1987) Molecular mimicry and autoimmune disease [published erratum appears in Cell 1987 Dec 4;51(5):878]. Cell 50:819–820

    CAS  PubMed  Google Scholar 

  91. Petri M, Orbai AM, Alarcon GS et al (2012) Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum 64:2677–2686

    PubMed Central  PubMed  Google Scholar 

  92. Pisetsky DS (2012) Antinuclear antibodies in rheumatic disease: a proposal for a function-based classification. Scand J Immunol 76:223–228

    CAS  PubMed  Google Scholar 

  93. Pisetsky DS (1997) Specificity and immunochemical properties of antibodies to bacterial DNA. Methods 11:55–61

    CAS  PubMed  Google Scholar 

  94. Pisitkun P, Deane JA, Difilippantonio MJ et al (2006) Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 312:1669–1672

    CAS  PubMed  Google Scholar 

  95. Price JV, Tangsombatvisit S, Xu GY et al (2012) On silico peptide microarrays for high-resolution mapping of antibody epitopes and diverse protein-protein interactions. Nat Med 18:1434−1440

  96. Punaro MG (2013) The treatment of systemic lupus proliferative nephritis. Pediatr Nephrol 28:2069–2078

    PubMed  Google Scholar 

  97. Putterman C, Diamond B (1998) Immunization with a peptide surrogate for double-stranded DNA (dsDNA) induces autoantibody production and renal immunoglobulin deposition. J Exp Med 188:29–38

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Rahman A, Isenberg DA (2008) Systemic lupus erythematosus. N Engl J Med 358:929–939

    CAS  PubMed  Google Scholar 

  99. Ray SK, Putterman C, Diamond B (1996) Pathogenic autoantibodies are routinely generated during the response to foreign antigen: a paradigm for autoimmune disease. Proc Natl Acad Sci U S A 93:2019–2024

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Rekvig OP, Moens U, Sundsfjord A et al (1997) Experimental expression in mice and spontaneous expression in human SLE of polyomavirus T-antigen. A molecular basis for induction of antibodies to DNA and eukaryotic transcription factors. J Clin Invest 99:2045–2054

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Rekvig OP, Nossent JC (2003) Anti-double-stranded DNA antibodies, nucleosomes, and systemic lupus erythematosus: a time for new paradigms? Arthritis Rheum 48:300–312

    CAS  PubMed  Google Scholar 

  102. Ronnblom L, Alm GV, Eloranta ML (2009) Type I interferon and lupus. Curr Opin Rheumatol 21:471–477

    PubMed  Google Scholar 

  103. Rumore PM, Steinman CR (1990) Endogenous circulating DNA in systemic lupus erythematosus. Occurrence as multimeric complexes bound to histone. J Clin Invest 86:69–74

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Sabbaga J, Line SR, Potocnjak P et al (1989) A murine nephritogenic monoclonal anti-DNA autoantibody binds directly to mouse laminin, the major non-collagenous protein component of the glomerular basement membrane. Eur J Immunol 19:137–143

    CAS  PubMed  Google Scholar 

  105. Seredkina N, Rekvig OP (2011) Acquired loss of renal nuclease activity is restricted to DNasel and is an organ-selective feature in murine lupus nephritis. Am J Pathol 179:1120–1128

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Seredkina N, Van der Vlag J, Berden J et al (2013) Lupus nephritis: enigmas, conflicting models and an emerging concept. Mol Med 19:161–169

    PubMed Central  PubMed  Google Scholar 

  107. Seredkina N, Zykova SN, Rekvig OP (2009) Progression of murine lupus nephritis is linked to acquired renal Dnase1 deficiency and not to up-regulated apoptosis. Am J Pathol 175:97–106

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Shearwin KE, Callen BP, Egan JB (2005) Transcriptional interference—a crash course. Trends Genet 21:339–345

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Shilatifard A (2004) Transcriptional elongation control by RNA polymerase II: a new frontier. Biochim Biophys Acta 1677:79–86

    CAS  PubMed  Google Scholar 

  110. Shlomchik M, Mascelli M, Shan H et al (1990) Anti-DNA antibodies from autoimmune mice arise by clonal expansion and somatic mutation. J Exp Med 171:265–292

    CAS  PubMed  Google Scholar 

  111. Shlomchik MJ, Marshak-Rothstein A, Wolfowicz CB et al (1987) The role of clonal selection and somatic mutation in autoimmunity. Nature 328:805–811

    CAS  PubMed  Google Scholar 

  112. Stollar BD (1986) Antibodies to DNA. CRC Crit Rev Biochem 20:1–36

    CAS  PubMed  Google Scholar 

  113. Stollar BD (1989) Immunochemistry of DNA. Int Rev Immunol 5:1–22

    CAS  PubMed  Google Scholar 

  114. Sundar K, Jacques S, Gottlieb P et al (2004) Expression of the Epstein-Barr virus nuclear antigen-1 (EBNA-1) in the mouse can elicit the production of anti-dsDNA and anti-Sm antibodies. J Autoimmun 23:127–140

    CAS  PubMed  Google Scholar 

  115. Svejstrup JQ (2013) RNA polymerase II transcript elongation. Biochim Biophys Acta 1829:1

    CAS  PubMed  Google Scholar 

  116. Tan EM, Cohen AS, Fries JF et al (1982) The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 25:1271–1277

    CAS  PubMed  Google Scholar 

  117. Thiyagarajan D, Fismen S, Seredkina N et al (2012) Silencing of renal DNaseI in murine lupus nephritis imposes exposure of large chromatin fragments and activation of toll like receptors and the Clec4e. PLoS One 7:e34080

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Tillman DM, Jou NT, Hill RJ et al (1992) Both IgM and IgG anti-DNA antibodies are the products of clonally selective B cell stimulation in (NZB x NZW)F1 mice. J Exp Med 176:761–779

    CAS  PubMed  Google Scholar 

  119. Tsokos GC (2011) Mechanisms of disease systemic lupus erythematosus. N Engl J Med 365:2110–2121

    CAS  PubMed  Google Scholar 

  120. Urbonaviciute V, Furnrohr BG, Meister S et al (2008) Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: implications for the pathogenesis of SLE. J Exp Med 205:3007–3018

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Utz PJ, Anderson P (1998) Posttranslational protein modifications, apoptosis, and the bypass of tolerance to autoantigens. Arthritis Rheum Us 41:1152–1160

    CAS  Google Scholar 

  122. Utz PJ, Gensler TJ, Anderson P (2000) Death, autoantigen modifications, and tolerance. Arthritis Res 2:101–114

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Van Bavel CC, Dieker J, Muller S et al (2009) Apoptosis-associated acetylation on histone H2B is an epitope for lupus autoantibodies. Mol Immunol 47:511–516

    PubMed  Google Scholar 

  124. Van Bavel CC, Dieker JW, Kroeze Y et al (2011) Apoptosis-induced histone H3 methylation is targeted by autoantibodies in systemic lupus erythematosus. Ann Rheum Dis 70:201–207

    PubMed  Google Scholar 

  125. Van Bavel CC, Dieker JW, Tamboer WP et al (2010) Lupus-derived monoclonal autoantibodies against apoptotic chromatin recognize acetylated conformational epitopes. Mol Immunol 48:248–256

    PubMed  Google Scholar 

  126. Van Bavel CC, Fenton KA, Rekvig OP et al (2008) Glomerular targets of nephritogenic autoantibodies in systemic lupus erythematosus. Arthritis Rheum 58:1892–1899

    PubMed  Google Scholar 

  127. Van Bavel CC, Van Der Vlag J, Berden JH (2007) Glomerular binding of anti-dsDNA autoantibodies: the dispute resolved? Kidney Int 71:600–601

    PubMed  Google Scholar 

  128. Van Bruggen MC, Kramers C, Berden JH (1996) Autoimmunity against nucleosomes and lupus nephritis. Ann Med Interne Paris 147:485–489

    PubMed  Google Scholar 

  129. Van Bruggen MC, Kramers C, Hylkema MN et al (1994) Pathophysiology of lupus nephritis: the role of nucleosomes. Neth J Med 45:273–279

    PubMed  Google Scholar 

  130. Van Bruggen MC, Kramers C, Hylkema MN et al (1996) Significance of anti-nuclear and anti-extracellular matrix autoantibodies for albuminuria in murine lupus nephritis; a longitudinal study on plasma and glomerular eluates in MRL/l mice. Clin Exp Immunol 105:132–139

    PubMed  Google Scholar 

  131. Van Bruggen MC, Walgreen B, Rijke TP et al (1997) Antigen specificity of anti-nuclear antibodies complexed to nucleosomes determines glomerular basement membrane binding in vivo. Eur J Immunol 27:1564–1569

    PubMed  Google Scholar 

  132. Van der Vlag J, Berden JH (2011) Lupus nephritis: role of antinucleosome autoantibodies. Semin Nephrol 31:376–389

    PubMed  Google Scholar 

  133. Van Ghelue M, Moens U, Bendiksen S et al (2003) Autoimmunity to nucleosomes related to viral infection: a focus on hapten-carrier complex formation. J Autoimmun 20:171–182

  134. Voll RE, Roth EA, Girkontaite I et al (1997) Histone-specific Th0 and Th1 clones derived from systemic lupus erythematosus patients induce double-stranded DNA antibody production. Arthritis Rheum 40:2162–2171

    CAS  PubMed  Google Scholar 

  135. Weening JJ, D'agati VD, Schwartz MM et al (2004) The classification of glomerulonephritis in systemic lupus erythematosus revisited. Kidney Int 65:521–530

    PubMed  Google Scholar 

  136. Westhoff CM, Whittier A, Kathol S et al (1997) DNA-binding antibodies from viable motheaten mutant mice: implications for B cell tolerance. J Immunol 159:3024–3033

    CAS  PubMed  Google Scholar 

  137. Widom J (1992) A relationship between the helical twist of DNA and the ordered positioning of nucleosomes in all eukaryotic cells. Proc Natl Acad Sci U S A 89:1095–1099

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Williams RC Jr, Malone C, Blood B et al (1999) Anti-DNA and anti-nucleosome antibody affinity—a mirror image of lupus nephritis? J Rheumatol 26:331–346

    CAS  PubMed  Google Scholar 

  139. Winfield JB, Faiferman I, Koffler D (1977) Avidity of anti-DNA antibodies in serum and IgG glomerular eluates from patients with systemic lupus erythematosus. Association of high avidity antinative DNA antibody with glomerulonephritis. J Clin Invest 59:90–96

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Wu ZQ, Drayton D, Pisetsky DS (1997) Specificity and immunochemical properties of antibodies to bacterial DNA in sera of normal human subjects and patients with systemic lupus erythematosus (SLE). Clin Exp Immunol 109:27–31

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Xie C, Liang Z, Chang S et al (2003) Use of a novel elution regimen reveals the dominance of polyreactive antinuclear autoantibodies in lupus kidneys. Arthritis Rheum 48:2343–2352

    CAS  PubMed  Google Scholar 

  142. Zykova SN, Seredkina N, Benjaminsen J et al (2008) Reduced fragmentation of apoptotic chromatin is associated with nephritis in lupus-prone (NZB x NZW)F(1) mice. Arthritis Rheum 58:813–825

    CAS  PubMed  Google Scholar 

  143. Zykova SN, Tveita AA, Rekvig OP (2010) Renal Dnase1 enzyme activity and protein expression is selectively shut down in murine and human membranoproliferative lupus nephritis. PLoS One 5(8):e12096

Download references

Acknowledgments

Elmar Pieterse is acknowledged for the help in preparing Fig. 1. We thank Rod Wolstenholme (Faculty of Health Sciences, Uit) for expert help in preparing Fig. 2. This study was supported by Northern Norway Regional Health Authority Medical Research Program (Grant nos. SFP-100-04 and SFP-101-04), the University of Tromsø as Milieu (OPR), and the Dutch Arthritis Association (Grant 09-1-308; JvdV).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ole Petter Rekvig or Johan Van der Vlag.

Additional information

This article is a contribution to the special issue on B cell-mediated autoimmune diseases - Guest Editors: Thomas Winkler and Reinhard Voll

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rekvig, O.P., Van der Vlag, J. The pathogenesis and diagnosis of systemic lupus erythematosus: still not resolved. Semin Immunopathol 36, 301–311 (2014). https://doi.org/10.1007/s00281-014-0428-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-014-0428-6

Keywords

Navigation