Skip to main content

Advertisement

Log in

Molecular and cellular mechanisms of bone morphogenetic proteins and activins in the skin: potential benefits for wound healing

  • Review Article
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Bone morphogenetic proteins (BMPs) and activins are phylogenetically conserved proteins, belonging to the transforming growth factor-β superfamily, that signal through the phosphorylation of receptor-regulated Smad proteins, activating different cell responses. They are involved in various steps of skin morphogenesis and wound repair, as can be evidenced by the fact that their expression is increased in skin injuries. BMPs play not only a role in bone regeneration but are also involved in cartilage, tendon-like tissue and epithelial regeneration, maintain vascular integrity, capillary sprouting, proliferation/migration of endothelial cells and angiogenesis, promote neuron and dendrite formation, alter neuropeptide levels and are involved in immune response modulation, at least in animal models. On the other hand, activins are involved in wound repair through the regulation of skin and immune cell migration and differentiation, re-epithelialization and granulation tissue formation, and also promote the expression of collagens by fibroblasts and modulate scar formation. This review aims at enunciating the effects of BMPs and activins in the skin, namely in skin development, as well as in crucial phases of skin wound healing, such as inflammation, angiogenesis and repair, and will focus on the effects of these proteins on skin cells and their signaling pathways, exploring the potential therapeutic approach of the application of BMP-2, BMP-6 and activin A in chronic wounds, particularly diabetic foot ulcerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Acosta JB, del Barco DG, Vera DC, Savigne W, Lopez-Saura P, Guillen Nieto G, Schultz GS (2008) The pro-inflammatory environment in recalcitrant diabetic foot wounds. Int Wound J 5(4):530–539

    Article  PubMed  Google Scholar 

  2. Ai X, Cappuzzello J, Hall AK (1999) Activin and bone morphogenetic proteins induce calcitonin gene-related peptide in embryonic sensory neurons in vitro. Mol Cell Neurosci 14(6):506–518

    Article  PubMed  CAS  Google Scholar 

  3. Al-Wahbi AM (2010) Impact of a diabetic foot care education program on lower limb amputation rate. Vasc Health Risk Manag 6:923–934

    Article  PubMed  Google Scholar 

  4. Anitha M, Shahnavaz N, Qayed E, Joseph I, Gossrau G, Mwangi S, Sitaraman SV, Greene JG, Srinivasan S (2010) BMP2 promotes differentiation of nitrergic and catecholaminergic enteric neurons through a Smad1-dependent pathway. Am J Physiol Gastrointest Liver Physiol 298(3):G375–G383

    Article  PubMed  CAS  Google Scholar 

  5. Antsiferova M, Klatte JE, Bodo E, Paus R, Jorcano JL, Matzuk MM, Werner S, Kogel H (2009) Keratinocyte-derived follistatin regulates epidermal homeostasis and wound repair. Lab Invest 89(2):131–141

    Article  PubMed  CAS  Google Scholar 

  6. Attisano L, Wrana JL (2002) Signal transduction by the TGF-beta superfamily. Science 296(5573):1646–1647

    Article  PubMed  CAS  Google Scholar 

  7. Au K, Ehrlich HP (2010) When the Smad signaling pathway is impaired, fibroblasts advance open wound contraction. Exp Mol Pathol 89(3):236–240

    Article  PubMed  CAS  Google Scholar 

  8. Bamberger C, Scharer A, Antsiferova M, Tychsen B, Pankow S, Muller M, Rulicke T, Paus R, Werner S (2005) Activin controls skin morphogenesis and wound repair predominantly via stromal cells and in a concentration-dependent manner via keratinocytes. Am J Pathol 167(3):733–747

    Article  PubMed  CAS  Google Scholar 

  9. Bandyopadhyay A, Yadav PS, Prashar P (2013) BMP signaling in development and diseases: A pharmacological perspective. Biochem Pharmacol 85(7):857–864

    Article  PubMed  CAS  Google Scholar 

  10. Beer HD, Gassmann MG, Munz B, Steiling H, Engelhardt F, Bleuel K, Werner S (2000) Expression and function of keratinocyte growth factor and activin in skin morphogenesis and cutaneous wound repair. J Investig Dermatol Symp Proc 5(1):34–39

    Article  PubMed  CAS  Google Scholar 

  11. Berlanga-Acosta J (2011) Diabetic lower extremity wounds: the rationale for growth factors-based infiltration treatment. Int Wound J 8(6):612–620

    Article  PubMed  Google Scholar 

  12. Bogdanski P, Pupek-Musialik D, Dytfeld J, Jagodzinski PP, Jablecka A, Kujawa A, Musialik K (2007) Influence of insulin therapy on expression of chemokine receptor CCR5 and selected inflammatory markers in patients with type 2 diabetes mellitus. Int J Clin Pharmacol Ther 45(10):563–567

    PubMed  CAS  Google Scholar 

  13. Botchkarev VA (2003) Bone morphogenetic proteins and their antagonists in skin and hair follicle biology. J Invest Dermatol 120(1):36–47

    Article  PubMed  CAS  Google Scholar 

  14. Botchkarev VA, Sharov AA (2004) BMP signaling in the control of skin development and hair follicle growth. Differ Res Biol Divers 72(9–10):512–526

    Article  CAS  Google Scholar 

  15. Boulais N, Misery L (2008) The epidermis: a sensory tissue. Eur J Dermatol 18(2):119–127

    PubMed  Google Scholar 

  16. Bressan M, Davis P, Timmer J, Herzlinger D, Mikawa T (2009) Notochord-derived BMP antagonists inhibit endothelial cell generation and network formation. Dev Biol 326(1):101–111

    Article  PubMed  CAS  Google Scholar 

  17. Cassetta L, Cassol E, Poli G (2011) Macrophage polarization in health and disease. Sci World J 11:2391–2402

    Article  CAS  Google Scholar 

  18. Chang H, Brown CW, Matzuk MM (2002) Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocr Rev 23(6):787–823

    Article  PubMed  CAS  Google Scholar 

  19. Cruise BA, Xu P, Hall AK (2004) Wounds increase activin in skin and a vasoactive neuropeptide in sensory ganglia. Dev Biol 271(1):1–10

    Article  PubMed  CAS  Google Scholar 

  20. Cunha SI, Pardali E, Thorikay M, Anderberg C, Hawinkels L, Goumans MJ, Seehra J, Heldin CH, ten Dijke P, Pietras K (2010) Genetic and pharmacological targeting of activin receptor-like kinase 1 impairs tumor growth and angiogenesis. J Exp Med 207(1):85–100

    Article  PubMed  CAS  Google Scholar 

  21. da Silva L, Carvalho E, Cruz MT (2010) Role of neuropeptides in skin inflammation and its involvement in diabetic wound healing. Expert Opin Biol Ther 10(10):1427–1439. doi:10.1517/14712598.2010.515207

    Article  PubMed  CAS  Google Scholar 

  22. Dani C (2013) Activins in adipogenesis and obesity. Int J Obes (Lond) 37(2):163–166

    Article  CAS  Google Scholar 

  23. David L, Mallet C, Mazerbourg S, Feige JJ, Bailly S (2007) Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood 109(5):1953–1961

    Article  PubMed  CAS  Google Scholar 

  24. David L, Mallet C, Vailhe B, Lamouille S, Feige JJ, Bailly S (2007) Activin receptor-like kinase 1 inhibits human microvascular endothelial cell migration: potential roles for JNK and ERK. J Cell Physiol 213(2):484–489

    Article  PubMed  CAS  Google Scholar 

  25. Davis PJ (2009) The double-edged sword of the immune system–a force for good or evil in the wound? Int Wound J 6(4):241–245

    Article  PubMed  Google Scholar 

  26. de Kretser DM, O’Hehir RE, Hardy CL, Hedger MP (2012) The roles of activin A and its binding protein, follistatin, in inflammation and tissue repair. Mol Cell Endocrinol 359(1–2):101–106

    Article  PubMed  CAS  Google Scholar 

  27. Derynck R (1994) TGF-beta-receptor-mediated signaling. Trends Biochem Sci 19(12):548–553

    Article  PubMed  CAS  Google Scholar 

  28. Dickinson S, Hancock DP, Petocz P, Ceriello A, Brand-Miller J (2008) High-glycemic index carbohydrate increases nuclear factor-kappaB activation in mononuclear cells of young, lean healthy subjects. Am J Clin Nutr 87(5):1188–1193

    PubMed  CAS  Google Scholar 

  29. Eming SA, Krieg T, Davidson JM (2007) Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol 127(3):514–525

    Article  PubMed  CAS  Google Scholar 

  30. Endo D, Kogure K, Hasegawa Y, Maku-uchi M, Kojima I (2004) Activin A augments vascular endothelial growth factor activity in promoting branching tubulogenesis in hepatic sinusoidal endothelial cells. J Hepatol 40(3):399–404

    Article  PubMed  CAS  Google Scholar 

  31. Fessing MY, Atoyan R, Shander B, Mardaryev AN, Botchkarev VV Jr, Poterlowicz K, Peng Y, Efimova T, Botchkarev VA (2010) BMP signaling induces cell-type-specific changes in gene expression programs of human keratinocytes and fibroblasts. J Invest Dermatol 130(2):398–404

    Article  PubMed  CAS  Google Scholar 

  32. Freinkel RK, Woodley D (2001) The biology of the skin. Parthenon Pub. Group, New York

    Google Scholar 

  33. Fuchs E (2007) Scratching the surface of skin development. Nature 445(7130):834–842

    Article  PubMed  CAS  Google Scholar 

  34. Fumagalli M, Musso T, Vermi W, Scutera S, Daniele R, Alotto D, Cambieri I, Ostorero A, Gentili F, Caposio P, Zucca M, Sozzani S, Stella M, Castagnoli C (2007) Imbalance between activin A and follistatin drives postburn hypertrophic scar formation in human skin. Exp Dermatol 16(7):600–610

    Article  PubMed  CAS  Google Scholar 

  35. Funaba M, Ikeda T, Murakami M, Ogawa K, Abe M (2005) Up-regulation of mouse mast cell protease-6 gene by transforming growth factor-beta and activin in mast cell progenitors. Cell Signal 17(1):121–128

    Article  PubMed  CAS  Google Scholar 

  36. Funaba M, Ikeda T, Murakami M, Ogawa K, Tsuchida K, Sugino H, Abe M (2003) Transcriptional activation of mouse mast cell Protease-7 by activin and transforming growth factor-beta is inhibited by microphthalmia-associated transcription factor. J Biol Chem 278(52):52032–52041

    Article  PubMed  CAS  Google Scholar 

  37. Funaba M, Ikeda T, Ogawa K, Murakami M, Abe M (2003) Role of activin A in murine mast cells: modulation of cell growth, differentiation, and migration. J Leukoc Biol 73(6):793–801

    Article  PubMed  CAS  Google Scholar 

  38. Galiano RD, Tepper OM, Pelo CR, Bhatt KA, Callaghan M, Bastidas N, Bunting S, Steinmetz HG, Gurtner GC (2004) Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am J Pathol 164(6):1935–1947

    Article  PubMed  CAS  Google Scholar 

  39. Game FL, Hinchliffe RJ, Apelqvist J, Armstrong DG, Bakker K, Hartemann A, Londahl M, Price PE, Jeffcoate WJ (2012) A systematic review of interventions to enhance the healing of chronic ulcers of the foot in diabetes. Diabetes/Metab Res Rev 28(Suppl 1):119–141

    Article  Google Scholar 

  40. Ge J, Wang Y, Feng Y, Liu H, Cui X, Chen F, Tai G, Liu Z (2009) Direct effects of activin A on the activation of mouse macrophage RAW264.7 cells. Cell Mol Immunol 6(2):129–133

    Article  PubMed  CAS  Google Scholar 

  41. Gillitzer R, Goebeler M (2001) Chemokines in cutaneous wound healing. J Leukoc Biol 69(4):513–521

    PubMed  CAS  Google Scholar 

  42. Gold LI, Sung JJ, Siebert JW, Longaker MT (1997) Type I (RI) and type II (RII) receptors for transforming growth factor-beta isoforms are expressed subsequent to transforming growth factor-beta ligands during excisional wound repair. Am J Pathol 150(1):209–222

    PubMed  CAS  Google Scholar 

  43. Greenhalgh DG (1998) The role of apoptosis in wound healing. Int J Biochem Cell Biol 30(9):1019–1030

    Article  PubMed  CAS  Google Scholar 

  44. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314–321

    Article  PubMed  CAS  Google Scholar 

  45. Hall AK, Dinsio KJ, Cappuzzello J (2001) Skin cell induction of calcitonin gene-related peptide in embryonic sensory neurons in vitro involves activin. Dev Biol 229(2):263–270

    Article  PubMed  CAS  Google Scholar 

  46. Hayashi Y, Maeshima K, Goto F, Kojima I (2007) Activin A as a critical mediator of capillary formation: interaction with the fibroblast growth factor action. Endocr J 54(2):311–318

    Article  PubMed  CAS  Google Scholar 

  47. Heinke J, Wehofsits L, Zhou Q, Zoeller C, Baar KM, Helbing T, Laib A, Augustin H, Bode C, Patterson C, Moser M (2008) BMPER is an endothelial cell regulator and controls bone morphogenetic protein-4-dependent angiogenesis. Circ Res 103(8):804–812

    Article  PubMed  CAS  Google Scholar 

  48. Hirt-Burri N, Scaletta C, Gerber S, Pioletti DP, Applegate LA (2008) Wound-healing gene family expression differences between fetal and foreskin cells used for bioengineered skin substitutes. Artif Organs 32(7):509–518

    Article  PubMed  Google Scholar 

  49. Hogan BL (1996) Bone morphogenetic proteins in development. Curr Opin Genet Dev 6(4):432–438

    Article  PubMed  CAS  Google Scholar 

  50. Honda Y, Anada T, Kamakura S, Nakamura M, Sugawara S, Suzuki O (2006) Elevated extracellular calcium stimulates secretion of bone morphogenetic protein 2 by a macrophage cell line. Biochem Biophys Res Commun 345(3):1155–1160

    Article  PubMed  CAS  Google Scholar 

  51. Hong JH, Lee GT, Lee JH, Kwon SJ, Park SH, Kim SJ, Kim IY (2009) Effect of bone morphogenetic protein-6 on macrophages. Immunology 128(1 Suppl):e442–e450

    Article  PubMed  Google Scholar 

  52. Horbinski C, Stachowiak EK, Chandrasekaran V, Miuzukoshi E, Higgins D, Stachowiak MK (2002) Bone morphogenetic protein-7 stimulates initial dendritic growth in sympathetic neurons through an intracellular fibroblast growth factor signaling pathway. J Neurochem 80(1):54–63

    Article  PubMed  CAS  Google Scholar 

  53. Hubner G, Hu Q, Smola H, Werner S (1996) Strong induction of activin expression after injury suggests an important role of activin in wound repair. Dev Biol 173(2):490–498

    Article  PubMed  CAS  Google Scholar 

  54. Hwang EA, Lee HB, Tark KC (2001) Comparison of bone morphogenetic protein receptors expression in the fetal and adult skin. Yonsei Med J 42(6):581–586

    PubMed  CAS  Google Scholar 

  55. Ito Y, Sarkar P, Mi Q, Wu N, Bringas P Jr, Liu Y, Reddy S, Maxson R, Deng C, Chai Y (2001) Overexpression of Smad2 reveals its concerted action with Smad4 in regulating TGF-beta-mediated epidermal homeostasis. Dev Biol 236(1):181–194

    Article  PubMed  CAS  Google Scholar 

  56. Jeffcoate WJ, Harding KG (2003) Diabetic foot ulcers. Lancet 361(9368):1545–1551. doi:10.1016/S0140-6736(03)13169-8

    Article  PubMed  Google Scholar 

  57. Kaiser S, Schirmacher P, Philipp A, Protschka M, Moll I, Nicol K, Blessing M (1998) Induction of bone morphogenetic protein-6 in skin wounds. Delayed reepitheliazation and scar formation in BMP-6 overexpressing transgenic mice. J Invest Dermatol 111(6):1145–1152

    Article  PubMed  CAS  Google Scholar 

  58. Kingsley DM (1994) The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 8(2):133–146

    Article  PubMed  CAS  Google Scholar 

  59. Kirana S, Stratmann B, Prante C, Prohaska W, Koerperich H, Lammers D, Gastens MH, Quast T, Negrean M, Stirban OA, Nandrean SG, Gotting C, Minartz P, Kleesiek K, Tschoepe D (2012) Autologous stem cell therapy in the treatment of limb ischaemia induced chronic tissue ulcers of diabetic foot patients. Int J Clin Pract 66(4):384–393

    Article  PubMed  CAS  Google Scholar 

  60. Klopcic B, Maass T, Meyer E, Lehr HA, Metzger D, Chambon P, Mann A, Blessing M (2007) TGF-beta superfamily signaling is essential for tooth and hair morphogenesis and differentiation. Eur J Cell Biol 86(11–12):781–799

    Article  PubMed  CAS  Google Scholar 

  61. Knighton DR, Fiegel VD (1989) Macrophage-derived growth factors in wound healing: regulation of growth factor production by the oxygen microenvironment. Am Rev Respir Dis 140(4):1108–1111

    Article  PubMed  CAS  Google Scholar 

  62. Kozian DH, Ziche M, Augustin HG (1997) The activin-binding protein follistatin regulates autocrine endothelial cell activity and induces angiogenesis. Lab Invest 76(2):267–276

    PubMed  CAS  Google Scholar 

  63. Kwon SJ, Lee GT, Lee JH, Kim WJ, Kim IY (2009) Bone morphogenetic protein-6 induces the expression of inducible nitric oxide synthase in macrophages. Immunology 128(1 Suppl):e758–e765

    Article  PubMed  Google Scholar 

  64. Lamouille S, Mallet C, Feige JJ, Bailly S (2002) Activin receptor-like kinase 1 is implicated in the maturation phase of angiogenesis. Blood 100(13):4495–4501

    Article  PubMed  CAS  Google Scholar 

  65. Li G, Cui Y, McIlmurray L, Allen WE, Wang H (2005) rhBMP-2, rhVEGF(165), rhPTN and thrombin-related peptide, TP508 induce chemotaxis of human osteoblasts and microvascular endothelial cells. J Orthop Res 23(3):680–685

    Article  PubMed  CAS  Google Scholar 

  66. Lin SY, Morrison JR, Phillips DJ, de Kretser DM (2003) Regulation of ovarian function by the TGF-beta superfamily and follistatin. Reproduction 126(2):133–148

    Article  PubMed  CAS  Google Scholar 

  67. Liu D, Wang J, Kinzel B, Mueller M, Mao X, Valdez R, Liu Y, Li E (2007) Dosage-dependent requirement of BMP type II receptor for maintenance of vascular integrity. Blood 110(5):1502–1510

    Article  PubMed  CAS  Google Scholar 

  68. Liu ZJ, Velazquez OC (2008) Hyperoxia, endothelial progenitor cell mobilization, and diabetic wound healing. Antioxid Redox Signal 10(11):1869–1882

    Article  PubMed  CAS  Google Scholar 

  69. Maeshima K, Maeshima A, Hayashi Y, Kishi S, Kojima I (2004) Crucial role of activin a in tubulogenesis of endothelial cells induced by vascular endothelial growth factor. Endocrinology 145(8):3739–3745

    Article  PubMed  CAS  Google Scholar 

  70. Maric I, Poljak L, Zoricic S, Bobinac D, Bosukonda D, Sampath KT, Vukicevic S (2003) Bone morphogenetic protein-7 reduces the severity of colon tissue damage and accelerates the healing of inflammatory bowel disease in rats. J Cell Physiol 196(2):258–264

    Article  PubMed  CAS  Google Scholar 

  71. Martinez VG, Hernandez-Lopez C, Valencia J, Hidalgo L, Entrena A, Zapata AG, Vicente A, Sacedon R, Varas A (2010) The canonical BMP signaling pathway is involved in human monocyte-derived dendritic cell maturation. Immunol Cell Biol 89(5):610–618

    Article  PubMed  CAS  Google Scholar 

  72. Maruyama K, Asai J, Ii M, Thorne T, Losordo DW, D’Amore PA (2007) Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing. Am J Pathol 170(4):1178–1191

    Article  PubMed  Google Scholar 

  73. Massague J (2000) How cells read TGF-beta signals. Nat Rev Mol Cell Biol 1(3):169–178

    Article  PubMed  CAS  Google Scholar 

  74. McCarthy SA, Bicknell R (1993) Inhibition of vascular endothelial cell growth by activin-A. J Biol Chem 268(31):23066–23071

    PubMed  CAS  Google Scholar 

  75. Mi Q, Riviere B, Clermont G, Steed DL, Vodovotz Y (2007) Agent-based model of inflammation and wound healing: insights into diabetic foot ulcer pathology and the role of transforming growth factor-beta1. Wound Repair Regen 15(5):671–682

    Article  PubMed  Google Scholar 

  76. Midwood KS, Williams LV, Schwarzbauer JE (2004) Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol 36(6):1031–1037

    Article  PubMed  CAS  Google Scholar 

  77. Moser M, Binder O, Wu Y, Aitsebaomo J, Ren R, Bode C, Bautch VL, Conlon FL, Patterson C (2003) BMPER, a novel endothelial cell precursor-derived protein, antagonizes bone morphogenetic protein signaling and endothelial cell differentiation. Mol Cell Biol 23(16):5664–5679

    Article  PubMed  CAS  Google Scholar 

  78. Munz B, Smola H, Engelhardt F, Bleuel K, Brauchle M, Lein I, Evans LW, Huylebroeck D, Balling R, Werner S (1999) Overexpression of activin A in the skin of transgenic mice reveals new activities of activin in epidermal morphogenesis, dermal fibrosis and wound repair. EMBO J 18(19):5205–5215

    Article  PubMed  CAS  Google Scholar 

  79. Munz B, Tretter YP, Hertel M, Engelhardt F, Alzheimer C, Werner S (2001) The roles of activins in repair processes of the skin and the brain. Mol Cell Endocrinol 180(1–2):169–177

    Article  PubMed  CAS  Google Scholar 

  80. Musso T, Scutera S, Vermi W, Daniele R, Fornaro M, Castagnoli C, Alotto D, Ravanini M, Cambieri I, Salogni L, Elia AR, Giovarelli M, Facchetti F, Girolomoni G, Sozzani S (2008) Activin A induces Langerhans cell differentiation in vitro and in human skin explants. PLoS ONE 3(9):e3271

    Article  PubMed  CAS  Google Scholar 

  81. Mustoe T (2004) Understanding chronic wounds: a unifying hypothesis on their pathogenesis and implications for therapy. Am J Surg 187(5A):65S–70S

    Article  PubMed  CAS  Google Scholar 

  82. Nagamine K, Furue M, Fukui A, Matsuda A, Hori T, Asashima M (2007) Blood cell and vessel formation following transplantation of activin-treated explants in Xenopus. Biol Pharm Bull 30(10):1856–1859

    Article  PubMed  CAS  Google Scholar 

  83. Nathan C (2002) Points of control in inflammation. Nature 420(6917):846–852. doi:10.1038/nature01320

    Article  PubMed  CAS  Google Scholar 

  84. Owens P, Han G, Li AG, Wang XJ (2008) The role of Smads in skin development. J Invest Dermatol 128(4):783–790

    Article  PubMed  CAS  Google Scholar 

  85. Pangas SA, Woodruff TK (2000) Activin signal transduction pathways. TEM 11(8):309–314

    PubMed  CAS  Google Scholar 

  86. Panopoulou E, Murphy C, Rasmussen H, Bagli E, Rofstad EK, Fotsis T (2005) Activin A suppresses neuroblastoma xenograft tumor growth via antimitotic and antiangiogenic mechanisms. Cancer Res 65(5):1877–1886

    Article  PubMed  CAS  Google Scholar 

  87. Pavelock KA, Girard BM, Schutz KC, Braas KM, May V (2007) Bone morphogenetic protein down-regulation of neuronal pituitary adenylate cyclase-activating polypeptide and reciprocal effects on vasoactive intestinal peptide expression. J Neurochem 100(3):603–616

    Article  PubMed  CAS  Google Scholar 

  88. Poulaki V, Mitsiades N, Kruse FE, Radetzky S, Iliaki E, Kirchhof B, Joussen AM (2004) Activin a in the regulation of corneal neovascularization and vascular endothelial growth factor expression. Am J Pathol 164(4):1293–1302

    Article  PubMed  CAS  Google Scholar 

  89. Raida M, Clement JH, Leek RD, Ameri K, Bicknell R, Niederwieser D, Harris AL (2005) Bone morphogenetic protein 2 (BMP-2) and induction of tumor angiogenesis. J Cancer Res Clin Oncol 131(11):741–750

    Article  PubMed  CAS  Google Scholar 

  90. Ren R, Charles PC, Zhang C, Wu Y, Wang H, Patterson C (2007) Gene expression profiles identify a role for cyclooxygenase 2-dependent prostanoid generation in BMP6-induced angiogenic responses. Blood 109(7):2847–2853

    PubMed  CAS  Google Scholar 

  91. Roberts AB, Russo A, Felici A, Flanders KC (2003) Smad3: a key player in pathogenetic mechanisms dependent on TGF-beta. Ann NY Acad Sci 995:1–10

    Article  PubMed  CAS  Google Scholar 

  92. Robson NC, Phillips DJ, McAlpine T, Shin A, Svobodova S, Toy T, Pillay V, Kirkpatrick N, Zanker D, Wilson K, Helling I, Wei H, Chen W, Cebon J, Maraskovsky E (2008) Activin-A: a novel dendritic cell-derived cytokine that potently attenuates CD40 ligand-specific cytokine and chemokine production. Blood 111(5):2733–2743

    Article  PubMed  CAS  Google Scholar 

  93. Rogers LC, Frykberg RG, Armstrong DG, Boulton AJ, Edmonds M, Van GH, Hartemann A, Game F, Jeffcoate W, Jirkovska A, Jude E, Morbach S, Morrison WB, Pinzur M, Pitocco D, Sanders L, Wukich DK, Uccioli L (2011) The Charcot foot in diabetes. J Am Podiatr Med Assoc 101(5):437–446

    PubMed  Google Scholar 

  94. Rothhammer T, Bataille F, Spruss T, Eissner G, Bosserhoff AK (2007) Functional implication of BMP4 expression on angiogenesis in malignant melanoma. Oncogene 26(28):4158–4170

    Article  PubMed  CAS  Google Scholar 

  95. Rotzer D, Krampert M, Sulyok S, Braun S, Stark HJ, Boukamp P, Werner S (2006) Id proteins: novel targets of activin action, which regulate epidermal homeostasis. Oncogene 25(14):2070–2081

    Article  PubMed  CAS  Google Scholar 

  96. Salogni L, Musso T, Bosisio D, Mirolo M, Jala VR, Haribabu B, Locati M, Sozzani S (2009) Activin A induces dendritic cell migration through the polarized release of CXC chemokine ligands 12 and 14. Blood 113(23):5848–5856

    Article  PubMed  CAS  Google Scholar 

  97. Scharpfenecker M, van Dinther M, Liu Z, van Bezooijen RL, Zhao Q, Pukac L, Lowik CW, ten Dijke P (2007) BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J Cell Sci 120(Pt 6):964–972

    Article  PubMed  CAS  Google Scholar 

  98. Scutera S, Riboldi E, Daniele R, Elia AR, Fraone T, Castagnoli C, Giovarelli M, Musso T, Sozzani S (2008) Production and function of activin A in human dendritic cells. Eur Cytokine Netw 19(1):60–68

    PubMed  CAS  Google Scholar 

  99. Shao ES, Lin L, Yao Y, Bostrom KI (2009) Expression of vascular endothelial growth factor is coordinately regulated by the activin-like kinase receptors 1 and 5 in endothelial cells. Blood 114(10):2197–2206

    Article  PubMed  CAS  Google Scholar 

  100. Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113(6):685–700

    Article  PubMed  CAS  Google Scholar 

  101. Sieveking DP, Ng MK (2009) Cell therapies for therapeutic angiogenesis: back to the bench. Vasc Med 14(2):153–166

    Article  PubMed  Google Scholar 

  102. Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341(10):738–746

    Article  PubMed  CAS  Google Scholar 

  103. Soares R, Balogh G, Guo S, Gartner F, Russo J, Schmitt F (2004) Evidence for the notch signaling pathway on the role of estrogen in angiogenesis. Mol Endocrinol 18(9):2333–2343

    Article  PubMed  CAS  Google Scholar 

  104. Soares R, Guo S, Gartner F, Schmitt FC, Russo J (2003) 17 beta -estradiol-mediated vessel assembly and stabilization in tumor angiogenesis requires TGF beta and EGFR crosstalk. Angiogenesis 6(4):271–281

    Article  PubMed  CAS  Google Scholar 

  105. Stegenga ME, van der Crabben SN, Dessing MC, Pater JM, van den Pangaart PS, de Vos AF, Tanck MW, Roos D, Sauerwein HP, van der Poll T (2008) Effect of acute hyperglycaemia and/or hyperinsulinaemia on proinflammatory gene expression, cytokine production and neutrophil function in humans. Diabet Med 25(2):157–164

    Article  PubMed  CAS  Google Scholar 

  106. Stelnicki EJ, Longaker MT, Holmes D, Vanderwall K, Harrison MR, Largman C, Hoffman WY (1998) Bone morphogenetic protein-2 induces scar formation and skin maturation in the second trimester fetus. Plast Reconstr Surg 101(1):12–19

    Article  PubMed  CAS  Google Scholar 

  107. Stoitzner P, Stossel H, Wankell M, Hofer S, Heufler C, Werner S, Romani N (2005) Langerhans cells are strongly reduced in the skin of transgenic mice overexpressing follistatin in the epidermis. Eur J Cell Biol 84(8):733–741

    Article  PubMed  CAS  Google Scholar 

  108. Sulyok S, Wankell M, Alzheimer C, Werner S (2004) Activin: an important regulator of wound repair, fibrosis, and neuroprotection. Mol Cell Endocrinol 225(1–2):127–132

    Article  PubMed  CAS  Google Scholar 

  109. Suzuki Y, Ohga N, Morishita Y, Hida K, Miyazono K, Watabe T (2010) BMP-9 induces proliferation of multiple types of endothelial cells in vitro and in vivo. J Cell Sci 123(Pt 10):1684–1692

    Article  PubMed  CAS  Google Scholar 

  110. Symes AJ, Pitts RL, Conover J, Kos K, Coulombe J (2000) Synergy of activin and ciliary neurotrophic factor signaling pathways in the induction of vasoactive intestinal peptide gene expression. Mol Endocrinol 14(3):429–439

    Article  PubMed  CAS  Google Scholar 

  111. ten Dijke P, Hill CS (2004) New insights into TGF-beta-Smad signalling. Trends Biochem Sci 29(5):265–273

    Article  PubMed  CAS  Google Scholar 

  112. Thompson TB, Cook RW, Chapman SC, Jardetzky TS, Woodruff TK (2004) Beta A versus beta B: is it merely a matter of expression? Mol Cell Endocrinol 225(1–2):9–17

    Article  PubMed  CAS  Google Scholar 

  113. Thompson TB, Lerch TF, Cook RW, Woodruff TK, Jardetzky TS (2005) The structure of the follistatin:activin complex reveals antagonism of both type I and type II receptor binding. Dev Cell 9(4):535–543

    Article  PubMed  CAS  Google Scholar 

  114. Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL (1998) SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell 95(6):779–791

    Article  PubMed  CAS  Google Scholar 

  115. Turns M (2011) The diabetic foot: an overview of assessment and complications. Br J Nurs 20(15):S19–S25

    PubMed  Google Scholar 

  116. Urist MR, Strates BS (1971) Bone morphogenetic protein. J Dent Res 50(6):1392–1406

    Article  PubMed  CAS  Google Scholar 

  117. Urness LD, Sorensen LK, Li DY (2000) Arteriovenous malformations in mice lacking activin receptor-like kinase-1. Nat Genet 26(3):328–331

    Article  PubMed  CAS  Google Scholar 

  118. Wagner K, Peters M, Scholz A, Benckert C, Ruderisch HS, Wiedenmann B, Rosewicz S (2004) Activin A stimulates vascular endothelial growth factor gene transcription in human hepatocellular carcinoma cells. Gastroenterology 126(7):1828–1843

    Article  PubMed  CAS  Google Scholar 

  119. Wang D, Prakash J, Nguyen P, Davis-Dusenbery BN, Hill NS, Layne MD, Hata A, Lagna G (2012) Bone morphogenetic protein signaling in vascular disease: anti-inflammatory action through myocardin-related transcription factor A. J Biol Chem 287(33):28067–28077

    Article  PubMed  CAS  Google Scholar 

  120. Wang SY, Tai GX, Zhang PY, Mu DP, Zhang XJ, Liu ZH (2008) Inhibitory effect of activin A on activation of lipopolysaccharide-stimulated mouse macrophage RAW264.7 cells. Cytokine 42(1):85–91

    Article  PubMed  CAS  Google Scholar 

  121. Wankell M, Munz B, Hubner G, Hans W, Wolf E, Goppelt A, Werner S (2001) Impaired wound healing in transgenic mice overexpressing the activin antagonist follistatin in the epidermis. EMBO J 20(19):5361–5372

    Article  PubMed  CAS  Google Scholar 

  122. Werner S, Alzheimer C (2006) Roles of activin in tissue repair, fibrosis, and inflammatory disease. Cytokine Growth Factor Rev 17(3):157–171

    Article  PubMed  CAS  Google Scholar 

  123. Werner S, Beer HD, Mauch C, Luscher B (2001) The Mad1 transcription factor is a novel target of activin and TGF-beta action in keratinocytes: possible role of Mad1 in wound repair and psoriasis. Oncogene 20(51):7494–7504

    Article  PubMed  CAS  Google Scholar 

  124. Xu P, Hall AK (2006) The role of activin in neuropeptide induction and pain sensation. Dev Biol 299(2):303–309

    Article  PubMed  CAS  Google Scholar 

  125. Xu P, Hall AK (2007) Activin acts with nerve growth factor to regulate calcitonin gene-related peptide mRNA in sensory neurons. Neuroscience 150(3):665–674

    Article  PubMed  CAS  Google Scholar 

  126. Xu P, Van Slambrouck C, Berti-Mattera L, Hall AK (2005) Activin induces tactile allodynia and increases calcitonin gene-related peptide after peripheral inflammation. J Neurosci 25(40):9227–9235

    Article  PubMed  CAS  Google Scholar 

  127. Yan C, Grimm WA, Garner WL, Qin L, Travis T, Tan N, Han YP (2010) Epithelial to mesenchymal transition in human skin wound healing is induced by tumor necrosis factor-alpha through bone morphogenic protein-2. Am J Pathol 176(5):2247–2258

    Article  PubMed  CAS  Google Scholar 

  128. Yang L, Yamasaki K, Shirakata Y, Dai X, Tokumaru S, Yahata Y, Tohyama M, Hanakawa Y, Sayama K, Hashimoto K (2006) Bone morphogenetic protein-2 modulates Wnt and frizzled expression and enhances the canonical pathway of Wnt signaling in normal keratinocytes. J Dermatol Sci 42(2):111–119

    Article  PubMed  CAS  Google Scholar 

  129. Zhang C, Wang KZ, Qiang H, Tang YL, Li Q, Li M, Dang XQ (2010) Angiopoiesis and bone regeneration via co-expression of the hVEGF and hBMP genes from an adeno-associated viral vector in vitro and in vivo. Acta Pharmacol Sin 31(7):821–830

    Article  PubMed  CAS  Google Scholar 

  130. Zhang F, Qiu T, Wu X, Wan C, Shi W, Wang Y, Chen JG, Wan M, Clemens TL, Cao X (2009) Sustained BMP signaling in osteoblasts stimulates bone formation by promoting angiogenesis and osteoblast differentiation. J Bone Miner Res 24(7):1224–1233

    Article  PubMed  CAS  Google Scholar 

  131. Zhang M, Liu NY, Wang XE, Chen YH, Li QL, Lu KR, Sun L, Jia Q, Zhang L, Zhang L (2011) Activin B promotes epithelial wound healing in vivo through RhoA-JNK signaling pathway. PLoS ONE 6(9):e25143

    Article  PubMed  CAS  Google Scholar 

  132. Zhou Q, Heinke J, Vargas A, Winnik S, Krauss T, Bode C, Patterson C, Moser M (2007) ERK signaling is a central regulator for BMP-4 dependent capillary sprouting. Cardiovasc Res 76(3):390–399

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Fundação para a Ciência e Tecnologia (FCT) under contract PTDC/SAU-MII/098567/2008, PEst-C/SAU/LA0001/2011 and PEst-C/SAU/LA0001/2013-2014, in addition to the EFSD/JDRF/Novo Nordisk European Programme in Type 1 Diabetes Research and Sociedade Portuguesa de Diabetologia (SPD).

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Carvalho.

Additional information

J. Moura and L. da Silva contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moura, J., da Silva, L., Cruz, M.T. et al. Molecular and cellular mechanisms of bone morphogenetic proteins and activins in the skin: potential benefits for wound healing. Arch Dermatol Res 305, 557–569 (2013). https://doi.org/10.1007/s00403-013-1381-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-013-1381-2

Keywords

Navigation