Skip to main content
Log in

Secretory carrier membrane proteins

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Secretory carrier membrane proteins (SCAMPs) are a family of integral membrane proteins that play roles in mediating exocytosis in animal cells. However, relatively little is known about the subcellular localization, trafficking, and function of SCAMPs in plants. Several recent studies in plant cells indicate that plant SCAMPs share many similarities with their mammalian homologs although there are differences. In this review, we will first summarize and compare animal and plant SCAMPs in terms of their subcellular localization, trafficking, and possible functions. We will then present a phylogenetic analysis of plant and animal SCAMPs. Finally, we will present expression analysis on selective Arabidopsis SCAMPs in the hope of pointing to directions for functional characterization of plant SCAMPs in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aikawa Y, Martin TF (2003) ARF6 regulates a plasma membrane pool of phosphatidylinositol(4,5)bisphosphate required for regulated exocytosis. J Cell Biol 162:647–659

    Article  PubMed  CAS  Google Scholar 

  • Aoh QL, Castle AM, Hubbard CH, Katsumata O, Castle JD (2009) SCAMP3 negatively regulates epidermal growth factor receptor degradation and promotes receptor recycling. Mol Biol Cell 20:1816–1832

    Article  PubMed  CAS  Google Scholar 

  • Aoyagi K, Sugaya T, Umeda M, Yamamoto S, Terakawa S, Takahashi M (2005) The activation of exocytotic sites by the formation of phosphatidylinositol 4,5-bisphosphate microdomains at syntaxin clusters. J Biol Chem 280:17346–17352

    Article  PubMed  CAS  Google Scholar 

  • Baluska F, Liners F, Hlavacka A, Schlicht M, Van Cutsem P, McCurdy DW, Menzel D (2005) Cell wall pectins and xyloglucans are internalized into dividing root cells and accumulate within cell plates during cytokinesis. Protoplasma 225:141–155

    Article  PubMed  CAS  Google Scholar 

  • Bar M, Aharon M, Benjamin S, Rotblat B, Horowitz M, Avni A (2008) AtEHDs, novel Arabidopsis EH-domain-containing proteins involved in endocytosis. Plant J 55:1025–1038

    Article  PubMed  CAS  Google Scholar 

  • Bassham DC, Sanderfoot AA, Kovaleva V, Zheng HY, Raikhel NV (2000) AtVPS45 complex formation at the trans-Golgi network. Mol Biol Cell 11:2251–2265

    PubMed  CAS  Google Scholar 

  • Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116:153–166

    Article  PubMed  CAS  Google Scholar 

  • Brand SH, Castle JD (1993) SCAMP 37, a new marker within the general cell surface recycling system. EMBO J 12:3753–3761

    PubMed  CAS  Google Scholar 

  • Brand SH, Laurie SM, Mixon MB, Castle JD (1991) Secretory carrier membrane proteins 31–35 define a common protein composition among secretory carrier membranes. J Biol Chem 266:18949–18957

    PubMed  CAS  Google Scholar 

  • Braun A, Pinyol R, Dahlhaus R, Koch D, Fonarev P, Grant BD, Kessels MM, Qualmann B (2005) EHD proteins associate with syndapin I and II and such interactions play a crucial role in endosomal recycling. Mol Biol Cell 16:3642–3658

    Article  PubMed  CAS  Google Scholar 

  • Brown E, Verkade P (2010) The use of markers for correlative light electron microscopy. Protoplasma 244:91–97

    Article  PubMed  Google Scholar 

  • Cai G, Cresti M (2010) Microtubule motors and pollen tube growth—still an open question. Protoplasma 247:131–143

    Article  PubMed  Google Scholar 

  • Cai Y, Jia T, Lam SK, Ding Y, Gao C, San MW, Pimpl P, Jiang L (2011) Multiple cytosolic and transmembrane determinants are required for the trafficking of SCAMP1 via an ER–Golgi–TGN–PM pathway. Plant J 65:882–896

    Article  PubMed  CAS  Google Scholar 

  • Castle A, Castle D (2005) Ubiquitously expressed secretory carrier membrane proteins (SCAMPs) 1–4 mark different pathways and exhibit limited constitutive trafficking to and from the cell surface. J Cell Sci 118:3769–3780

    Article  PubMed  CAS  Google Scholar 

  • Chow CM, Neto H, Foucart C, Moore I (2008) Rab-A2 and Rab-A3 GTPases define a trans-Golgi endosomal membrane domain in Arabidopsis that contributes substantially to the cell plate. Plant Cell 20:101–123

    Article  PubMed  CAS  Google Scholar 

  • Confalonieri S, Di Fiore PP (2002) The Eps15 homology (EH) domain. FEBS Lett 513:24–29

    Article  PubMed  CAS  Google Scholar 

  • de Beer T, Hoofnagle AN, Enmon JL, Bowers RC, Yamabhai M, Kay BK, Overduin M (2000) Molecular mechanism of NPF recognition by EH domains. Nat Struct Biol 7:1018–1022

    Article  PubMed  Google Scholar 

  • Dettmer J, Hong-Hermesdorf A, Stierhof YD, Schumacher K (2006) Vacuolar H + −ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell 18:715–730

    Article  PubMed  CAS  Google Scholar 

  • Dhonukshe P, Baluska F, Schlicht M, Hlavacka A, Samaj J, Friml J, Gadella TWJ (2006) Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis. Dev Cell 10:137–150

    Article  PubMed  CAS  Google Scholar 

  • Du F, Ren H (2011) Development and application of probes for labeling the actin cytoskeleton in living plant cells. Protoplasma 248:239–250

    Article  PubMed  Google Scholar 

  • Ellena JF, Moulthrop J, Wu J, Rauch M, Jaysinghne S, Castle JD, Cafiso DS (2004) Membrane position of a basic aromatic peptide that sequesters phosphatidylinositol 4,5 bisphosphate determined by site-directed spin labeling and high-resolution NMR. Biophys J 87:3221–3233

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Chacon R, Achiriloaie M, Janz R, Albanesi JP, Sudhof TC (2000) SCAMP1 function in endocytosis. J Biol Chem 275:12752–12756

    Article  PubMed  CAS  Google Scholar 

  • Guo Z, Liu L, Cafiso D, Castle D (2002) Perturbation of a very late step of regulated exocytosis by a secretory carrier membrane protein (SCAMP2)-derived peptide. J Biol Chem 277:35357–35363

    Article  PubMed  CAS  Google Scholar 

  • Han C, Chen T, Yang M, Li N, Liu H, Cao X (2009) Human SCAMP5, a novel secretory carrier membrane protein, facilitates calcium-triggered cytokine secretion by interaction with SNARE machinery. J Immunol 182:2986–2996

    Article  PubMed  CAS  Google Scholar 

  • Happel N, Honing S, Neuhaus JM, Paris N, Robinson DG, Holstein SE (2004) Arabidopsis mu A-adaptin interacts with the tyrosine motif of the vacuolar sorting receptor VSR-PS1. Plant J 37:678–693

    Article  PubMed  CAS  Google Scholar 

  • Henry GD, Corrigan DJ, Dineen JV, Baleja JD (2009) Charge effects in the selection of NPF motifs by the EH domain of EHD1. Biochemistry 49:3381–3392

    Article  Google Scholar 

  • Honda A, Nogami M, Yokozeki T, Yamazaki M, Nakamura H, Watanabe H, Kawamoto K, Nakayama K, Morris AJ, Frohman MA, Kanaho Y (1999) Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 99:521–532

    Article  PubMed  CAS  Google Scholar 

  • Hubbard C, Singleton D, Rauch M, Jayasinghe S, Cafiso D, Castle D (2000) The secretory carrier membrane protein family: structure and membrane topology. Mol Biol Cell 11:2933–2947

    PubMed  CAS  Google Scholar 

  • Hussain NK, Yamabhai M, Ramjaun AR, Guy AM, Baranes D, O’Bryan JP, Der CJ, Kay BK, McPherson PS (1999) Splice variants of intersectin are components of the endocytic machinery in neurons and nonneuronal cells. J Biol Chem 274:15671–15677

    Article  PubMed  CAS  Google Scholar 

  • Ischebeck T, Seiler S, Heilmann I (2010) At the poles across kingdoms: phosphoinositides and polar tip growth. Protoplasma 240:13–31

    Article  PubMed  CAS  Google Scholar 

  • Jiang L, Rogers JC (1998) Integral membrane protein sorting to vacuoles in plant cells: evidence fort wo pathways. J Cell Biol 143:1183–1199

    Article  PubMed  CAS  Google Scholar 

  • Kieken F, Sharma M, Jovic M, Giridharan SS, Naslavsky N, Caplan S, Sorgen PL (2010) Mechanism for the selective interaction of C-terminal Eps15 homology domain proteins with specific Asn-Pro-Phe-containing partners. J Biol Chem 285:8687–8694

    Article  PubMed  CAS  Google Scholar 

  • Lam SK, Siu CL, Hillmer S, Jang S, An G, Robinson DG, Jiang L (2007a) Rice SCAMP1 defines clathrin-coated, trans-Golgi-located tubular–vesicular structures as an early endosome in tobacco BY-2 cells. Plant Cell 19:296–319

    Article  PubMed  CAS  Google Scholar 

  • Lam SK, Tse YC, Robinson DG, Jiang L (2007b) Tracking down elusive early endosome. Trends Plant Sci 12:497–505

    Article  PubMed  CAS  Google Scholar 

  • Lam SK, Cai Y, Hillmer S, Robinson DG, Jiang L (2008) SCAMPs highlight the developing cell plate during cytokinesis in tobacco BY-2 cells. Plant Physiol 147:1637–1645

    Article  PubMed  CAS  Google Scholar 

  • Lam SK, Cai Y, Tse YC, Wang J, Law AH, Pimpl P, Chan HY, Xia J, Jiang L (2009) BFA-induced compartments from the Golgi apparatus and trans-Golgi network/early endosome are distinct in plant cells. Plant J 60:865–881

    Article  PubMed  CAS  Google Scholar 

  • Laurie SM, Cain CC, Lienhard GE, Castle JD (1993) The glucose transporter GluT4 and secretory carrier membrane proteins (SCAMPs) colocalize in rat adipocytes and partially segregate during insulin stimulation. J Biol Chem 268:19110–19117

    PubMed  CAS  Google Scholar 

  • Lippincott-Schwartz J, Roberts TH, Hirschberg K (2000) Secretory protein trafficking and organelle dynamics in living cells. Annu Rev Cell Dev Biol 16:557–589

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Guo Z, Tieu Q, Castle A, Castle D (2002) Role of secretory carrier membrane protein SCAMP2 in granule exocytosis. Mol Biol Cell 13:4266–4278

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Liao H, Castle A, Zhang J, Casanova J, Szabo G, Castle D (2005) SCAMP2 interacts with Arf6 and phospholipase D1 and links their function to exocytotic fusion pore formation in PC12 cells. Mol Biol Cell 16:4463–4472

    Article  PubMed  CAS  Google Scholar 

  • Miao Y, Jiang L (2007) Transient expression of fluorescent fusion proteins in protoplasts of suspension cultured cells. Nat Protocol 2:2348–2353

    Article  CAS  Google Scholar 

  • Miao Y, Yan PK, Kim H, Hwang I, Jiang L (2006) Localization of green fluorescent protein fusions with the seven Arabidopsis vacuolar sorting receptors to prevacuolar compartments in tobacco BY-2 cells. Plant Physiol 142:945–962

    Article  PubMed  CAS  Google Scholar 

  • Miao Y, Li KY, Li HY, Yao X, Jiang L (2008) The vacuolar transport of aleurain-GFP and 2S albumin-GFP fusion is mediated by the same pre-vacuolar compartments in tobacco BY-2 and Arabidopsis suspension cultured cells. Plant J 56:824–839

    Article  PubMed  CAS  Google Scholar 

  • Okamoto M, Schoch S, Sudhof TC (1999) EHSH1/intersectin, a protein that contains EH and SH3 domains and binds to dynamin and SNAP-25. A protein connection between exocytosis and endocytosis? J Biol Chem 274:18446–18454

    Article  PubMed  CAS  Google Scholar 

  • Page LJ, Sowerby PJ, Lui WW, Robinson MS (1999) Gamma-synergin: an EH domain-containing protein that interacts with gamma-adaptin. J Cell Biol 146:993–1004

    Article  PubMed  CAS  Google Scholar 

  • Paoluzi S, Castagnoli L, Lauro I, Salcini AE, Coda L, Fre S, Confalonieri S, Pelicci PG, Di Fiore PP, Cesareni G (1998) Recognition specificity of individual EH domains of mammals and yeast. EMBO J 17:6541–6550

    Article  PubMed  CAS  Google Scholar 

  • Paris N, Rogers SW, Jiang L, Kirsch T, Beevers L, Phillips TE, Rogers JC (1997) Molecular cloning and further characterization of a probable plant vacuolar sorting receptor. Plant Physiol 115:29–39

    Article  PubMed  CAS  Google Scholar 

  • Reichardt I, Stierhof YD, Mayer U, Richter S, Schwarz H, Schumacher K, Jurgens G (2007) Plant cytokinesis requires de novo secretory trafficking but not endocytosis. Curr Biol 17:2047–2053

    Article  PubMed  CAS  Google Scholar 

  • Rumpf J, Simon B, Jung N, Maritzen T, Haucke V, Sattler M, Groemping Y (2008) Structure of the Eps15-stonin2 complex provides a molecular explanation for EH-domain ligand specificity. EMBO J 27:558–569

    Article  PubMed  CAS  Google Scholar 

  • Salcini AE, Confalonieri S, Doria M, Santolini E, Tassi E, Minenkova O, Cesareni G, Pelicci PG, Di Fiore PP (1997) Binding specificity and in vivo targets of the EH domain, a novel protein–protein interaction module. Genes Dev 11:2239–2249

    Article  PubMed  CAS  Google Scholar 

  • Samuels AL, Giddings TH Jr, Staehelin LA (1995) Cytokinesis in tobacco BY-2 and root tip cells: a new model of cell plate formation in higher plants. J Cell Biol 130:1345–1357

    Article  PubMed  CAS  Google Scholar 

  • Santolini E, Salcini AE, Kay BK, Yamabhai M, Di Fiore PP (1999) The EH network. Exp Cell Res 253:186–209

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Schölkopf B, Weigel D, Lohmann J (2005) A gene expression map of Arabidopsis development. Nat Genet 37:501–506

    Article  PubMed  CAS  Google Scholar 

  • Segui-Simarro JM, Austin JR, White EA, Staehelin LA (2004) Electron tomographic analysis of somatic cell plate formation in meristematic cells of Arabidopsis preserved by high-pressure freezing. Plant Cell 16:836–856

    Article  PubMed  CAS  Google Scholar 

  • Sengar AS, Wang W, Bishay J, Cohen S, Egan SE (1999) The EH and SH3 domain Ese proteins regulate endocytosis by linking to dynamin and Eps15. EMBO J 18:1159–1171

    Article  PubMed  CAS  Google Scholar 

  • Shen Y, Wang J, Ding Y, Lo SW, Gouzerh G, Neuhaus JM, Jiang L (2011) The rice RMR1 associates with a distinct organelle as a prevacuolar compartment for the protein storage vacuole pathway. Mol Plant (in press). doi:10.1093/mp/ssr025

  • Suen PK, Shen J, Sun SS, Jiang L (2010) Expression and characterization of two functional vacuolar sorting receptor (VSR) proteins, BP-80 and AtVSR4 from culture media of transgenic tobacco BY-2 cells. Plant Sci 179:68–76

    Article  CAS  Google Scholar 

  • Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, Riedel D, Urlaub H, Schenck S, Brugger B, Ringler P, Muller SA, Rammner B, Grater F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmuller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tan PK, Howard JP, Payne GS (1996) The sequence NPFXD defines a new class of endocytosis signal in Saccharomyces cerevisiae. J Cell Biol 135:1789–1800

    Article  PubMed  CAS  Google Scholar 

  • Tang HY, Cai M (1996) The EH-domain-containing protein Pan1 is required for normal organization of the actin cytoskeleton in Saccharomyces cerevisiae. Mol Cell Biol 16:4897–4914

    PubMed  CAS  Google Scholar 

  • Toyooka K, Goto Y, Asatsuma S, Koizumi M, Mitsui T, Matsuoka K (2009) A mobile secretory vesicle cluster involved in mass transport from the Golgi to the plant cell exterior. Plant Cell 21:1212–1229

    Article  PubMed  CAS  Google Scholar 

  • Traub LM (2009) Tickets to ride: selecting cargo for clathrin-regulated internalization. Nat Rev Mol Cell Biol 10:583–596

    Article  PubMed  CAS  Google Scholar 

  • Tse YC, Mo B, Hillmer S, Zhao M, Lo SW, Robinson DG, Jiang L (2004) Identification of multivesicular bodies as prevacuolar compartments in Nicotiana tabacum BY-2 cells. Plant Cell 16:672–693

    Article  PubMed  CAS  Google Scholar 

  • Tse YC, Lam SK, Jiang L (2009) Organelle identification and characterization in plant cells: using a combinational apporach of confocal immunofluorescence and electron microscope. J Plant Biol 52:1–9

    Article  CAS  Google Scholar 

  • Van Damme D, Inze D, Russinova E (2008) Vesicle trafficking during somatic cytokinesis. Plant Physiol 147:1544–1552

    Article  PubMed  Google Scholar 

  • Wang H, Jiang L (2011) Transient expression and analysis of fluorescent reporter proteins in plant pollens. Nat Protocols 6:419–426

    Article  CAS  Google Scholar 

  • Wang J, Li Y, Lo SW, Hillmer S, Sun SS, Robinson DG, Jiang L (2007) Protein mobilization in germinating mung bean seeds involves vacuolar sorting receptors and multivesicular bodies. Plant Physiol 143:1628–1639

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Tse YC, Law AH, Sun SS, Sun YB, Xu ZF, Hillmer S, Robinson DG, Jiang L (2010a) Vacuolar sorting receptors (VSRs) and secretory carrier membrane proteins (SCAMPs) are essential for pollen tube growth. Plant J 61:826–838

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Ding Y, Wang J, Hillmer S, Miao Y, Lo SW, Wang X, Robinson DG, Jiang L (2010b) EXPO: an exocyst-positive organelle distinct from multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis in plant cells. Plant Cell 22:4009–4030

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Zhuang X, Ding Y, Hillmer S, Robinson DG, Jiang L (2011) Vacuolar sorting receptor proteins reach plasma membrane in pollen tubes. Mol Plant (in press). doi:10.1093/mp/ssr011

  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2:e718

    Article  PubMed  Google Scholar 

  • Wong WT, Schumacher C, Salcini AE, Romano A, Castagnino P, Pelicci PG, Di Fiore PP (1995) A protein-binding domain, EH, identified in the receptor tyrosine kinase substrate Eps15 and conserved in evolution. PNAS 92:9530–9534

    Google Scholar 

  • Wu TT, Castle JD (1998) Tyrosine phosphorylation of selected secretory carrier membrane proteins, SCAMP1 and SCAMP3, and association with the EGF receptor. Mol Biol Cell 9:1661–1674

    PubMed  CAS  Google Scholar 

  • Zouhar J, Munoz A, Rojo E (2010) Functional specialization within the vacuolar sorting receptor family: VSR1, VSR3 and VSR4 sort vacuolar storage cargo in seeds and vegetative tissues. Plant J 64:577–588

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Our research has been supported by grants from the Research Grants Council of Hong Kong (CUHK488707, CUHK465708, CUHK466309, and CUHK466610), and CUHK Schemes A/B/C to L. Jiang.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwen Jiang.

Additional information

Handling Editor: David Robinson

Angus Ho Yin Law, Cheung-Ming Chow contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Law, A.H.Y., Chow, CM. & Jiang, L. Secretory carrier membrane proteins. Protoplasma 249, 269–283 (2012). https://doi.org/10.1007/s00709-011-0295-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-011-0295-0

Keywords

Navigation