Skip to main content

Advertisement

Log in

NK cells dysfunction in systemic lupus erythematosus: relation to disease activity

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Through their cytotoxic capacities and cytokine production, natural killer (NK) cells modulate autoimmune diseases. However, their role in the pathogenesis of systemic lupus erythematosus (SLE) has not been extensively studied. The aim of this study was to analyse the immunophenotypic and functional characteristics of the two major NK cell subsets in SLE and relate them with disease activity. Peripheral blood samples from 44 patients with active (n = 18) and inactive SLE (n = 26) and 30 controls were analysed by flow cytometry to evaluate NK cell subsets, according to: the differential expression of CXCR3 and CD57; expression of granzyme B and perforin; and production of interferon gamma (IFN-γ) and tumor necrosis alpha (TNF-α), after PMA/ionomycin activation. A clear decrease in absolute and relative numbers of circulating NK cells was found in SLE, particularly in active disease, while the proportions of the major NK cell subsets were unaffected. Active SLE was associated with a reduced CXCR3 expression on both NK cell subsets and a lower frequency of CD56dim NK cells expressing CXCR3. Furthermore, granzyme B expression was decreased in both SLE groups, but the percentage of NK cells expressing granzyme B and perforin was higher, particularly in active disease. We found a significant decrease in the percentage of CD56bright and CD56dim NK cells producing TNF-α and of its expression on CD56dim NK cells in active disease, while IFN-γ expression on CD56bright NK cells was increased in both SLE groups. Our findings suggest that NK cell subsets exhibit unique phenotypic and functional changes that are particularly evident in active SLE, and they may have the potential to affect the disease outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ringold S, Lynm C, Golub RM (2011) JAMA patient page. Systemic lupus erythematosus. JAMA 306:668

    Article  PubMed  CAS  Google Scholar 

  2. Mok CC, Lau CS (2003) Pathogenesis of systemic lupus erythematosus. J Clin Pathol 56:481–490

    Article  PubMed  CAS  Google Scholar 

  3. Pickering MC, Botto M, Taylor PR, Lachmann PJ, Walport MJ (2000) Systemic lupus erythematosus, complement deficiency, and apoptosis. Adv Immunol 76:227–324

    Article  PubMed  CAS  Google Scholar 

  4. Herrmann M, Voll RE, Zoller OM, Hagenhofer M, Ponner BB, Kalden JR (1998) Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum 41:1241–1250

    Article  PubMed  CAS  Google Scholar 

  5. Gaipl US, Voll RE, Sheriff A, Franz S, Kalden JR, Herrmann M (2005) Impaired clearance of dying cells in systemic lupus erythematosus. Autoimmun Rev 4:189–194

    Article  PubMed  CAS  Google Scholar 

  6. Ren Y, Tang J, Mok MY, Chan AW, Wu A, Lau CS (2003) Increased apoptotic neutrophils and macrophages and impaired macrophage phagocytic clearance of apoptotic neutrophils in systemic lupus erythematosus. Arthritis Rheum 48:2888–2897

    Article  PubMed  Google Scholar 

  7. Meyer O (2009) Interferons and autoimmune disorders. Joint Bone Spine 76:464–473

    Article  PubMed  CAS  Google Scholar 

  8. Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP (1999) Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17:189–220

    Article  PubMed  CAS  Google Scholar 

  9. Seaman WE, Sleisenger M, Eriksson E, Koo GC (1987) Depletion of natural killer cells in mice by monoclonal antibody to NK-1.1. Reduction in host defense against malignancy without loss of cellular or humoral immunity. J Immunol 138:4539–4544

    PubMed  CAS  Google Scholar 

  10. Raulet DH (2004) Interplay of natural killer cells and their receptors with the adaptive immune response. Nat Immunol 5:996–1002

    Article  PubMed  CAS  Google Scholar 

  11. Horwitz DA, Gray JD, Ohtsuka K, Hirokawa M, Takahashi T (1997) The immunoregulatory effects of NK cells: the role of TGF-beta and implications for autoimmunity. Immunol Today 18:538–542

    Article  PubMed  CAS  Google Scholar 

  12. Park YW, Kee SJ, Cho YN et al (2009) Impaired differentiation and cytotoxicity of natural killer cells in systemic lupus erythematosus. Arthritis Rheum 60:1753–1763

    Article  PubMed  CAS  Google Scholar 

  13. Schleinitz N, Vely F, Harle JR, Vivier E (2010) Natural killer cells in human autoimmune diseases. Immunology 131:451–458

    Article  PubMed  CAS  Google Scholar 

  14. Yabuhara A, Yang FC, Nakazawa T et al (1996) A killing defect of natural killer cells as an underlying immunologic abnormality in childhood systemic lupus erythematosus. J Rheumatol 23:171–177

    PubMed  CAS  Google Scholar 

  15. Green MR, Kennell AS, Larche MJ, Seifert MH, Isenberg DA, Salaman MR (2005) Natural killer cell activity in families of patients with systemic lupus erythematosus: demonstration of a killing defect in patients. Clin Exp Immunol 141:165–173

    Article  PubMed  CAS  Google Scholar 

  16. Hervier B, Beziat V, Haroche J et al (2011) Phenotype and function of natural killer cells in systemic lupus erythematosus: excess interferon-gamma production in patients with active disease. Arthritis Rheum 63:1698–1706

    Article  PubMed  CAS  Google Scholar 

  17. Cooper MA, Fehniger TA, Caligiuri MA (2001) The biology of human natural killer-cell subsets. Trends Immunol 22:633–640

    Article  PubMed  CAS  Google Scholar 

  18. Sentman CL, Meadows SK, Wira CR, Eriksson M (2004) Recruitment of uterine NK cells: induction of CXC chemokine ligands 10 and 11 in human endometrium by estradiol and progesterone. J Immunol 173:6760–6766

    PubMed  CAS  Google Scholar 

  19. Proudfoot AE (2002) Chemokine receptors: multifaceted therapeutic targets. Nat Rev Immunol 2:106–115

    Article  PubMed  CAS  Google Scholar 

  20. Lacotte S, Brun S, Muller S, Dumortier H (2009) CXCR3, inflammation, and autoimmune diseases. Ann N Y Acad Sci 1173:310–317

    Article  PubMed  CAS  Google Scholar 

  21. Yap DY, Lai KN (2010) Cytokines and their roles in the pathogenesis of systemic lupus erythematosus: from basics to recent advances. J Biomed Biotechnol 2010:365083

    Article  PubMed  Google Scholar 

  22. Avramescu C, Biciusca V, Daianu T et al (2010) Cytokine panel and histopathological aspects in the systemic lupus erythematosus. Rom J Morphol Embryol 51:633–640

    PubMed  Google Scholar 

  23. Bombardier C, Gladman DD, Urowitz MB, Caron D, Chang CH (1992) Derivation of the SLEDAI. A disease activity index for lupus patients. The committee on prognosis studies in SLE. Arthritis Rheum 35:630–640

    Article  PubMed  CAS  Google Scholar 

  24. Gladman DD, Ibanez D, Urowitz MB (2002) Systemic lupus erythematosus disease activity index 2000. J Rheumatol 29:288–291

    PubMed  Google Scholar 

  25. Griffiths B, Mosca M, Gordon C (2005) Assessment of patients with systemic lupus erythematosus and the use of lupus disease activity indices. Best Pract Res Clin Rheumatol 19:685–708

    Article  PubMed  Google Scholar 

  26. Huang Z, Fu B, Zheng SG, Li X, Sun R, Tian Z, Wei H (2011) Involvement of CD226+ NK cells in immunopathogenesis of systemic lupus erythematosus. J Immunol 186:3421–3431

    Article  PubMed  CAS  Google Scholar 

  27. Erkeller-Yuksel FM, Lydyard PM, Isenberg DA (1997) Lack of NK cells in lupus patients with renal involvement. Lupus 6:708–712

    Article  PubMed  CAS  Google Scholar 

  28. Böhm I (2006) Quantification of absolute peripheral white blood cells and their subsets in patients with lupus erythematosus: comparison with other inflammatory diseases with and without autoimmune background. Biomed Pharmacother 60:92–95

    Article  PubMed  Google Scholar 

  29. Böhm I (2005) Nuclear-targeting autoantibodies induced nuclear PARP cleavage accompanied by more pronounced decrease of peripheral white blood cells than Ro/SSA and La/SSB antigen-targeting autoantibodies. J Clin Immunol 25:99–105

    Article  PubMed  Google Scholar 

  30. Böhm I (2004) Apoptosis: the link between autoantibodies and leuko-/lymphocytopenia in patients with lupus erythematosus. Scand J Rheumatol 33:409–416

    Article  PubMed  Google Scholar 

  31. Goto M, Tanimoto K, Horiuchi Y (1980) Natural cell mediated cytotoxicity in systemic lupus erythematosus: suppression by antilymphocyte antibody. Arthritis Rheum 23:1274–1281

    Article  PubMed  CAS  Google Scholar 

  32. Struyf NJ, Snoeck HW, Bridts CH, De Clerck LS, Stevens WJ (1990) Natural killer cell activity in Sjogren's syndrome and systemic lupus erythematosus: stimulation with interferons and interleukin-2 and correlation with immune complexes. Ann Rheum Dis 49:690–693

    Article  PubMed  CAS  Google Scholar 

  33. Nagler A, Lanier LL, Cwirla S, Phillips JH (1989) Comparative studies of human FcRIII-positive and negative natural killer cells. J Immunol 143:3183–3191

    PubMed  CAS  Google Scholar 

  34. Lanier LL, Le AM, Phillips JH, Warner NL, Babcock GF (1983) Subpopulations of human natural killer cells defined by expression of the Leu-7 (HNK-1) and Leu-11 (NK-15) antigens. J Immunol 131:1789–1796

    PubMed  CAS  Google Scholar 

  35. Clark-Lewis I, Mattioli I, Gong JH, Loetscher P (2003) Structure–function relationship between the human chemokine receptor CXCR3 and its ligands. J Biol Chem 278:289–295

    Article  PubMed  CAS  Google Scholar 

  36. Carvalheiro T, Rodrigues A, Lopes A, et al. (2012) Tolerogenic versus inflammatory activity of peripheral blood monocytes and dendritic cells subpopulations in systemic lupus erythematosus. Clin Dev Immunol 2012: 934161

  37. Henriques A, Ines L, Couto M et al (2010) Frequency and functional activity of Th17, Tc17 and other T-cell subsets in systemic lupus erythematosus. Cell Immunol 264:97–103

    Article  PubMed  CAS  Google Scholar 

  38. Henriques A, Ines L, Carvalheiro T et al (2011) Functional characterization of peripheral blood dendritic cells and monocytes in systemic lupus erythematosus. Rheumatol Int 32:863–869

    Article  PubMed  Google Scholar 

Download references

Disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Paiva.

Additional information

Ana Henriques and Luís Teixeira are co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 127 kb)

ESM 2

(PDF 165 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henriques, A., Teixeira, L., Inês, L. et al. NK cells dysfunction in systemic lupus erythematosus: relation to disease activity. Clin Rheumatol 32, 805–813 (2013). https://doi.org/10.1007/s10067-013-2176-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-013-2176-8

Keywords

Navigation