Skip to main content

Advertisement

Log in

Lactosylceramide is required in apoptosis induced by N-Smase

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Lactosylceramide (LacCer) is a member of the glycosphingolipid family which has been recently recognized as a signaling intermediate in the regulation of cell proliferation and cell adhesion. In this paper, we present our studies pointing to a potential role of LacCer in inducing apoptosis. In our studies we employed a human osteosarcoma cell line MG-63 (wild type, WT) and a neutral sphingomyelinase (N-SMase) deficient cell line CC derived from MG-63 (mutant) cells. We observed that WT cells were highly sensitive to tumor necrosis factor-α (TNF-α), ceramide and LacCer-induced apoptosis. In contrast, the mutant cells were insensitive to TNF-α-induced apoptosis as they did not generate ceramide and LacCer. However, the exogenous supply of ceramide and/or LacCer rendered the mutant cells apoptotic. Interestingly, preincubation of cells with D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP), an inhibitor of glucosylceramide synthase and lactosylceramide synthase, abrogated ceramide-induced apoptosis but not LacCer-induced apoptosis in both WT cells and the mutant cells. Moreover, TNF-α and LacCer-induced apoptosis required the generation of reactive oxygen species (ROS) in WT cells. However, since mutant cells did not produce significant amounts of LacCer and ROS in response to TNF-α treatment they are insensitive to TNF-α-induced apoptosis. In summary, our studies suggest that TNF-α-induced N-SMase activation and production of ceramide is required to activate the apoptosis pathway in human osteosarcoma cells. But it is not sufficient to induce apoptosis. Rather, the conversion of ceramide to LacCer and ROS generation are critical for apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

LacCer:

LactosylCeramide

TNF-α:

Tumor Necrosis Factor-α

N-SMase:

Neutral Sphingomyelinase

D-PDMP:

D-threo-1-Phenyl-2-Decanoylamino-3-Morpholino-1-Propanol

ROS:

Reactive Oxygen Species

MnSOD:

Manganese Superoxide Dismutase

NAC:

N-acetyl-L-cysteine

PBS:

Phosphate-Buffered Saline

DTT:

Dithiothreitol

ATP:

Adenosine Tris-Phosphate

DAPI:

4’,6-Diamidine-2’-phenylindole dihydrochloride

DCFH-DA:

diachlorofluorescein diacetate

TNFR1:

TNF-α receptor 1

SM:

sphingomyelin; Wild type

WT:

human osteosarcoma cell line MG-63

Mutant:

N-SMase deficient osteosarcoma cell line CC

References

  1. Hakomori, S.: Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Ann. Rev. Biochem. 50, 733–64 (1981)

    Article  CAS  PubMed  Google Scholar 

  2. Karlsson, K.A.: Animal glycosphingolipids as membrane attachment sites for bacteria. Ann. Rev. Biochem. 58, 309–350 (1989)

    Article  CAS  PubMed  Google Scholar 

  3. Lavie, Y., Cao, H., Bursten, S.L., Giuliano, A.E., Cabot, M.C.: Accumulation of glucosylceramides in multidrug-resistant cancer cells. J. Biol. Chem. 271, 19530–19536 (1996)

    Article  CAS  PubMed  Google Scholar 

  4. Lavie, Y., Cao, H., Volner, A., Lucci, A., Han, T., Geffen, V., Giuliano, A.E., Cabot, M.C.: Agents that reverse multidrug resistance, tamoxifen, verapamil, and cyclosporin A, block glycosphingolipid metabolism by inhibiting ceramide glycosylation in human cancer cells. J. Biol. Chem. 272, 1682–1687 (1997)

    Article  CAS  PubMed  Google Scholar 

  5. Chatterjee, S.: Lactosylceramide stimulates aortic smooth muscle cell proliferation. Biochem. Biophys. Res. Commun. 181, 554–561 (1991)

    Article  CAS  PubMed  Google Scholar 

  6. Bhunia, A.K., Han, H., Snowden, A., Chatterjee, S.: Redox-regulated signaling by lactosylceramide in the proliferation of human aortic smooth muscle cells. J. Biol. Chem. 272, 15642–15649 (1997)

    Article  CAS  PubMed  Google Scholar 

  7. Bhunia, A.K., Han, H., Snowden, A., Chatterjee, S.: Lactosylceramide stimulates Ras-GTP loading, kinases (MEK, Raf), p44 mitogen-activated protein kinase, and c-fos expression in human aortic smooth muscle cells. J. Biol. Chem. 271, 10660–10666 (1996)

    Article  CAS  PubMed  Google Scholar 

  8. Obeid, L.M., Linardic, C.M., Karolak, L.A., Hannum, Y.A.: Programmed cell death induced by ceramide. Science 259, 1769–1771 (1993)

    CAS  PubMed  Google Scholar 

  9. Chatterjee, S.: Sphingolipids in atherosclerosis and vascular biology. Art. Thromb. Vasc. Biol. 18, 1523–1533 (1998)

    CAS  Google Scholar 

  10. Hakomori, S.I.: In Spingolipid Chemistry, edited by Kanfer JN, Hakomori SI (Plenum Press, New York, 1983), pp. 52–53.

    Google Scholar 

  11. Kakugawa, Y., Wada, T., Yamaguchi, K., Yamanami, H., Ouchi, K., Sato, I., Miyagi, T.: Up-regulation of plasma membrane-associated ganglioside sialidase (Neu3) in human colon cancer and its involvement in apoptosis suppression. Proc. Natl. Acad. Sci. USA 99, 10718–10723 (2002)

    Article  CAS  PubMed  Google Scholar 

  12. Yeh, L.H., Kinsey, A.M., Chatterjee, S., Alevriadou, B.R.: Lactosylceramide mediates shear-induced endothelial superoxide production and intercellular adhesion molecule-1 expression. J. Vasc. Res. 38, 551–559 (2001)

    Article  CAS  PubMed  Google Scholar 

  13. Iwamoto, T., Fukumoto, S., Kanaoka, K., Sakai, E., Shibata, M., Fukumoto, E., Inokuchi, J.J., Takamiya, K., Furukawa, K., Furukawa, K., Kato, Y., Mizuno, A.: Lactosylceramide is essential for the osteoclastogenesis mediated by macrophage-colony-stimulating factor and receptor activator of nuclear factor-kappa B ligand. J. Biol. Chem. 276, 46031–46038 (2001)

    Article  CAS  PubMed  Google Scholar 

  14. Bhunia, A.K., Arai, T., Bulkley, G., Chatterjee, S.: Lactosylceramide mediates tumor necrosis factor-alpha-induced intercellular adhesion molecule-1 (ICAM-1) expression and the adhesion of neutrophil in human umbilical vein endothelial cells. J. Biol. Chem. 273, 34349–34357 (1998)

    Article  CAS  PubMed  Google Scholar 

  15. Arai, T., Bhunia, A.K., Chatterjee, S., Bulkley, G.B.: Lactosylceramide stimulates human neutrophils to upregulate Mac-1, adhere to endothelium, and generate reactive oxygen metabolites in vitro. Circ. Res. 82, 540–547 (1998)

    CAS  PubMed  Google Scholar 

  16. Polyak, K., Xia, Y., Zweier, J.L., Kinzler, K.W., Voglestein, B.: A model for p53-induced apoptosis. Nature 389, 300–305 (1997)

    Article  CAS  PubMed  Google Scholar 

  17. Cai, J., Jones, D.P.: Mitochondrial redox signaling during apoptosis. J. Bioenerg. Biomembr. 31, 327–334 (1999)

    Article  CAS  PubMed  Google Scholar 

  18. Gardner, A.M., Xu, F.H., Fady, C., Jacoby, F.J., Duffey, D.C., Tu, Y., Lichtenstein, A.: Apoptotic vs. nonapoptotic cytotoxicity induced by hydrogen peroxide. Free. Radical. Biol. Med. 22, 73–83 (1997)

    Article  CAS  Google Scholar 

  19. Sato, N., Iwata, S., Nakamura, K., Hori, T., Mori, K., Yodoi, J.: Thiol-mediated redox regulation of apoptosis. Possible roles of cellular thiols other than glutathione in T cell apoptosis. J. Immunol. 154, 3194–3203 (1995)

    CAS  PubMed  Google Scholar 

  20. Bustamante, J., Tovar, B.A., Montero, G., Boveris, A.: Early redox changes during rat thymocyte apoptosis. Arch. Biochem. Biophys. 337, 121–128 (1997)

    Article  CAS  PubMed  Google Scholar 

  21. Sun, X., Ross, D.: Quinone-induced apoptosis in human colon adenocarcinoma cells via DT-diaphorase mediated bioactivation. Chem. Biol. Interact. 100, 267–276 (1996)

    Article  CAS  PubMed  Google Scholar 

  22. Albrecht, H., Tschopp, J., Jongeneel, C.V.: Bcl-2 protects from oxidative damage and apoptotic cell death without interfering with activation of NF-kappa B by TNF. FEBS Lett. 351, 45–48 (1994)

    Article  CAS  PubMed  Google Scholar 

  23. Wang, J.H., Redmond, H.P., Watson, R.W., Bouchier-Hayes, D.: Induction of human endothelial cell apoptosis requires both heat shock and oxidative stress responses. Am. J. Physiol. 272, C1543–C1551 (1997)

    CAS  PubMed  Google Scholar 

  24. Atabay, C., Cagnoli, C.M., Kharlamov, E., Ikonomovic, M.D., Nanev, H.: Removal of serum from primary cultures of cerebellar granule neurons induces oxidative stress and DNA fragmentation: protection with antioxidants and glutamate receptor antagonists. J. Neurosci. Res. 43, 465–475 (1996)

    Article  CAS  PubMed  Google Scholar 

  25. Dobmeyer, T.S., Findhammer, S., Dobmeyer, J.M., Klein, S.A., Raffel, B., Hoelzer, D., Helm, E.B., Kabelitz, D., Rossol, R.: Ex vivo induction of apoptosis in lymphocytes is mediated by oxidative stress: role for lymphocyte loss in HIV infection. Free Radical. Biol. Med. 22, 775–785 (1997)

    Article  CAS  Google Scholar 

  26. Garcia-Ruiz, C., Colell, A., Mari, M., Morales, A., Fernandez-Checa, J.C.: Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J. Biol. Chem. 272, 11369–11377 (1997)

    Article  CAS  PubMed  Google Scholar 

  27. Johnson, T.M., Yu, Z.X., Ferrans, V.J., Lowenstein, R.A., Finkel, T.: Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proc. Natl. Acad. Sci. USA 93, 11848–11852 (1996)

    Article  CAS  PubMed  Google Scholar 

  28. Mayer, M., Noble, M.: N-acetyl-L-cysteine is a pluripotent protector against cell death and enhancer of trophic factor-mediated cell survival in vitro. Proc. Natl. Acad. Sci. USA. 91, 7496–7500 (1994)

    CAS  PubMed  Google Scholar 

  29. Iwata, S., Hori, T., Sato, N., Hirota, K., Sasada, T., Mitsui, A., Hirakawa, T., Yodoi, J.: Adult T cell leukemia (ATL)-derived factor/human thioredoxin prevents apoptosis of lymphoid cells induced by L-cystine and glutathione depletion: possible involvement of thiol-mediated redox regulation in apoptosis caused by pro-oxidant state. J. Immunol. 158, 3108–3117 (1997)

    CAS  PubMed  Google Scholar 

  30. Wong, G.H., Elwell, J.H., Oberley, L.W., Goeddel, D.V.: Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell 58, 923–931 (1989)

    Article  CAS  PubMed  Google Scholar 

  31. Chu, Z.L., McKinsey, T.A., Liu, L., Gentry, J.J., Malim, M.H., Ballard, D.W.: Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-kappaB control. Proc. Natl. Acad. Sci. USA 94, 10057–10062 (1997)

    Article  CAS  PubMed  Google Scholar 

  32. Van Antwerp, D.J., Martin, S.J., Kafri, T., Green, D.R., Verma, I.M.: Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science 274, 787–789 (1996)

    Article  PubMed  Google Scholar 

  33. Li, J.M., Shah, A.M.: Differential NADPH- versus NADH-dependent superoxide production by phagocyte-type endothelial cell NADPH oxidase. Cardiovasc. Res. 52, 477–486 (2001)

    Article  CAS  PubMed  Google Scholar 

  34. Signorelli, P., Hannun, Y.A.: Analysis and quantitation of ceramide. Methods in enzymology 345, 275–294 (2002)

    Article  PubMed  Google Scholar 

  35. Chatterjee, S., Martin, S.F.: In Membrane lipid signaling in aging and Age-Related Disease, edited by Mark P. Mattson (Lippincott, NY, 2003) pp. 3993–4005.

    Google Scholar 

  36. Carter, W.O., Narayanan, P.K., Robinson, J.P.: Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells. J. Leukoc. Biol. 55, 253–258 (1994)

    CAS  PubMed  Google Scholar 

  37. Zhang, P., Liu, B., Kang, S.W., Seo, M.S., Rhee, S.G., Obeid, L.M.: Thioredoxin peroxidase is a novel inhibitor of apoptosis with a mechanism distinct from that of Bcl-2. J. Biol. Chem. 272, 30615–30618 (1997)

    Article  CAS  PubMed  Google Scholar 

  38. Sonderfeld, S., Conzelmann, E., Schwarzmann, G., Burg, J., Hinrichs, U., Sandhoff, K.: Incorporation and metabolism of ganglioside GM2 in skin fibroblasts from normal and GM2 gangliosidosis subjects. Eur. J. Biochem. 149, 247–255 (1985)

    Article  CAS  PubMed  Google Scholar 

  39. Kolesnick, R.N., Golde, D.W.: The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell. 77, 325–328 (1994)

    Article  CAS  PubMed  Google Scholar 

  40. Hannun, Y.A.: The sphingomyelin cycle and the second messenger function of ceramide. J. Biol. Chem. 269, 3125–3128 (1994)

    CAS  PubMed  Google Scholar 

  41. De Maria, R., Lenti, L., Malisan, F., d’Agostino, F., Tomassini, B., Zeuner, A., Rippo, M.R., Testi, R.: Requirement for GD3 ganglioside in CD95- and ceramide-induced apoptosis. Science 277, 1652–1655 (1997)

    Article  PubMed  Google Scholar 

  42. Bhunia, A.K., Schwarzmann, G., Chatterjee, S.: GD3 recruits reactive oxygen species to induce cell proliferation and apoptosis in human aortic smooth muscle cells. J. Biol. Chem. 277, 16396–16402 (2002)

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, P., Liu, B., Kang, S.W., Seo, M.S., Rhee, S.G., Obeid, L.M.: Thioredoxin peroxidase is a novel inhibitor of apoptosis with a mechanism distinct from that of Bcl-2. J. Biol. Chem. 272, 30615–30618 (1997)

    Article  CAS  PubMed  Google Scholar 

  44. Schutze, S., Machleidt, T., Kronke, M.: The role of diacylglycerol and ceramide in tumor necrosis factor and interleukin-1 signal transduction. J. Leukoc. Biol. 56, 533–541 (1994)

    CAS  PubMed  Google Scholar 

  45. Verheij, M., Bose, R., Lin, X.H., Yao, B., Jarvis, W.D., Grant, S., Birrer, M.J., Szabo, E., Zon, L.I., Kyriakis, J.M., Haimovitz, F.A., Fuks, Z., Kolesnick, R.N.: Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature 380, 75–79 (1996)

    Article  CAS  PubMed  Google Scholar 

  46. Westwick, J.K., Bielawska, A.E., Dbaibo, G., Hannun, Y.A., Brenner, D.A.: Ceramide activates the stress-activated protein kinases. J. Biol. Chem. 270, 22689–22692 (1995)

    Article  CAS  PubMed  Google Scholar 

  47. Radin, N.S., Shayman, J.A., Inokuchi, J.: Metabolic effects of inhibiting glucosylceramide synthesis with PDMP and other substances. Adv. Lipid. Res. 26, 183–213 (1993)

    CAS  PubMed  Google Scholar 

  48. Chatterjee, S., Cleveland, T., Shi, W.Y., Inokuchi, J., Radin, N.S.: Studies of the action of ceramide-like substances (D- and L-PDMP) on sphingolipid glycosyltransferases and purified lactosylceramide synthase. Glycoconj. J. 13, 481–486 (1996)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subroto Chatterjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, S.F., Williams, N. & Chatterjee, S. Lactosylceramide is required in apoptosis induced by N-Smase. Glycoconj J 23, 147–157 (2006). https://doi.org/10.1007/s10719-006-7920-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-006-7920-8

Keywords

Navigation