Skip to main content
Log in

Interferon-α Induces Up-regulation and Nuclear Translocation of the Ro52 Autoantigen as Detected by a Panel of Novel Ro52-specific Monoclonal Antibodies

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Interferon-α (IFN-α) has been implicated in the pathogenesis of Sjögren’s syndrome and systemic lupus erythematosus. Ro52, which was recently identified as an E3 ligase with anti-proliferative and pro-apoptotic properties, is a major autoantigen targeted in both these conditions. Microarray analyses have indicated up-regulation of Ro52 by INF-α, and the objective of the present study was to address the potential link between IFN-α and Ro52. To investigate the influence of IFN-α on Ro52 protein levels and cellular localization, we generated a panel of monoclonal antibodies to different domains of Ro52. These novel monoclonal antibodies were characterized by immunoprecipitation, Western blot, and enzyme-linked immunosorbent assay using cell lysates, recombinant Ro52 protein, and synthetic peptides. Ro52 was up-regulated in HeLa cells and human B cells at the messenger RNA and protein levels in response to IFN-α stimulation as detected by reverse transcriptase polymerase chain reaction and Western blot. After up-regulation, Ro52 translocated from the cytoplasm to the nucleus. The nuclear translocation of Ro52 was observed after staining with generated monoclonal antibodies specific for both the RING, coiled-coil, and B30.2 domains of Ro52 and the nuclear translocation of Ro52 preceded IFN-α-induced apoptotic cell death detected by caspase-3 and TUNEL staining in the treated cultures. In conclusion, our data show that IFN-α first induces up-regulation of Ro52 protein and then prompts translocation of the up-regulated Ro52 protein in to the nucleus. The translocation precedes apoptosis of the IFN-α exposed cells, suggesting a role for Ro52 in mediating the anti-proliferative or pro-apoptotic effects of the autoimmune-related cytokine IFN-α.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kirkwood JM, Ernstoff MS. Interferons in the treatment of human cancer. J Clin Oncol 1984;2:336–52.

    PubMed  CAS  Google Scholar 

  2. Rönnblom LE, Alm GV, Oberg KE. Autoimmunity after alpha-interferon therapy for malignant carcinoid tumors. Ann Intern Med 1991;115:178–83.

    PubMed  Google Scholar 

  3. Bengtsson AA, Sturfelt G, Truedsson L, Blomberg J, Alm G, Vallin H, Ronnblom L. Activation of type I interferon system in systemic lupus erythematosus correlates with disease activity but not with antiretroviral antibodies. Lupus 2000;9:664–71.

    Article  PubMed  CAS  Google Scholar 

  4. Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J, Banchereau J, Pascual V. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med 2003;197:711–23.

    Article  PubMed  CAS  Google Scholar 

  5. Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, Shark KB, Grande WJ, Hughes KM, Kapur V, Gregersen PK, Behrens TW. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A 2003;100:2610–5.

    Article  PubMed  CAS  Google Scholar 

  6. Båve U, Nordmark G, Lövgren T, Rönnelid J, Cajander S, Eloranta ML, Alm GV, Rönnblom L. Activation of the type I interferon system in primary Sjogren’s syndrome: a possible etiopathogenic mechanism. Arthritis Rheum 2005;52:1185–95.

    Article  PubMed  CAS  Google Scholar 

  7. Gottenberg JE, Cagnard N, Lucchesi C, Letourneur F, Mistou S, Lazure T, Jacques S, Ba N, Ittah M, Lepajolec C, Labetoulle M, Ardizzone M, Sibilia J, Fournier C, Chiocchia G, Mariette X. Activation of IFN pathways and plasmacytoid dendritic cell recruitment in target organs of primary Sjogren’s syndrome. Proc Natl Acad Sci U S A 2006;103:2770–5.

    Article  PubMed  CAS  Google Scholar 

  8. Der SD, Zhou A, Williams BR, Silverman RH. Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc Natl Acad Sci U S A 1998;95:15623–8.

    Article  PubMed  CAS  Google Scholar 

  9. de Veer MJ, Holko M, Frevel M, Walker E, Der S, Paranjape JM, Silverman RH, Williams BR. Functional classification of interferon-stimulated genes identified using microarrays. J Leukoc Biol 2001;69:912–20.

    PubMed  Google Scholar 

  10. Pfeffer LM, Kim JG, Pfeffer SR, Carrigan DJ, Baker DP, Wei L, Homayouni R. Role of nuclear factor-kappaB in the antiviral action of interferon and interferon-regulated gene expression. J Biol Chem 2004;279:31304–11.

    Article  PubMed  CAS  Google Scholar 

  11. Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S, Luzi L, Riganelli D, Zanaria E, Messali S, Cainarca S, Guffanti A, Minucci S, Pelicci PG, Ballabio A. The tripartite motif family identifies cell compartments. Embo J 2001;20:2140–51.

    Article  PubMed  CAS  Google Scholar 

  12. Espinosa A, Zhou W, Ek M, Hedlund M, Brauner S, Popovic K, Horvath L, Wallerskog T, Oukka M, Nyberg F, Kuchroo VK, Wahren-Herlenius M. The Sjogren’s syndrome-associated autoantigen Ro52 is an E3 ligase that regulates proliferation and cell death. J Immunol 2006;176:6277–85.

    PubMed  CAS  Google Scholar 

  13. Wada K, Kamitani T. Autoantigen Ro52 is an E3 ubiquitin ligase. Biochem Biophys Res Commun 2006;339:415–21.

    Article  PubMed  CAS  Google Scholar 

  14. Sabile A, Meyer AM, Wirbelauer C, Hess D, Kogel U, Scheffner M, Krek W. Regulation of p27 degradation and S-phase progression by Ro52 RING finger protein. Mol Cell Biol 2006;26:5994–6004.

    Article  PubMed  CAS  Google Scholar 

  15. Blange I, Ringertz NR, Pettersson I. Identification of antigenic regions of the human 52kD Ro/SS-A protein recognized by patient sera. J Autoimmun 1994;7:263–74.

    Article  PubMed  CAS  Google Scholar 

  16. Ottosson L, Salomonsson S, Hennig J, Sonesson SE, Dorner T, Raats J, Kuchroo VK, Sunnerhagen M, Wahren-Herlenius M. Structurally derived mutations define congenital heart block-related epitopes within the 200-239 amino acid stretch of the Ro52 protein. Scand J Immunol 2005;61:109–18.

    Article  PubMed  CAS  Google Scholar 

  17. Salomonsson S, Dorner T, Theander E, Bremme K, Larsson P, Wahren-Herlenius M. A serologic marker for fetal risk of congenital heart block. Arthritis Rheum 2002;46:1233–41.

    Article  PubMed  CAS  Google Scholar 

  18. Fritsch C, Hoebeke J, Dali H, Ricchiuti V, Isenberg DA, Meyer O, Muller S. 52-kDa Ro/SSA epitopes preferentially recognized by antibodies from mothers of children with neonatal lupus and congenital heart block. Arthritis Res Ther 2005;8:R4.

    Article  CAS  Google Scholar 

  19. Salomonsson S, Sonesson SE, Ottosson L, Muhallab S, Olsson T, Sunnerhagen M, Kuchroo VK, Thoren P, Herlenius E, Wahren-Herlenius M. Ro/SSA autoantibodies directly bind cardiomyocytes, disturb calcium homeostasis, and mediate congenital heart block. J Exp Med 2005;201:11–7.

    Article  PubMed  CAS  Google Scholar 

  20. Sonesson SE, Salomonsson S, Jacobsson LA, Bremme K, Wahren-Herlenius M. Signs of first-degree heart block occur in one-third of fetuses of pregnant women with anti-SSA/Ro 52-kd antibodies. Arthritis Rheum 2004;50:1253–61.

    Article  PubMed  CAS  Google Scholar 

  21. Pourmand N, Pettersson I. The Zn2+ binding domain of the human Ro 52kD protein is a target for conformation-dependent autoantibodies. J Autoimmun 1998;11:11–7.

    Article  PubMed  CAS  Google Scholar 

  22. Eftekhari P, Salle L, Lezoualc, h F, Mialet J, Gastineau M, Briand JP, Isenberg DA, Fournie GJ, Argibay J, Fischmeister R, Muller S, Hoebeke J. Anti-SSA/Ro52 autoantibodies blocking the cardiac 5-HT4 serotoninergic receptor could explain neonatal lupus congenital heart block. Eur J Immunol 2000;30:2782–90.

    Article  PubMed  CAS  Google Scholar 

  23. Elagib KEE, Tengnér P, Levi M, Jonsson R, Thompson K, Natvig JB, Wahren-Herlenius M. Immunoglobulin variable genes and epitope recognition of human monoclonal anti-Ro 52-kd in primary Sjögren’s syndrome. Arthritis Rheum 1999;42:2471–78.

    Article  PubMed  CAS  Google Scholar 

  24. Pourmand N, Blange I, Ringertz N, Pettersson I. Intracellular localisation of the Ro 52kD auto-antigen in HeLa cells visualised with green fluorescent protein chimeras. Autoimmunity 1998;28:225–33.

    Article  PubMed  CAS  Google Scholar 

  25. Ottosson L, Hennig J, Espinosa A, Brauner S, Wahren-Herlenius M, Sunnerhagen M. Structural, functional and immunologic characterization of folded subdomains in the Ro52 protein targeted in Sjogren’s syndrome. Mol Immunol 2006;43:588–98.

    Article  PubMed  CAS  Google Scholar 

  26. Lovgren T, Eloranta ML, Bave U, Alm GV, Ronnblom L. Induction of interferon-alpha production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. Arthritis Rheum 2004;50:1861–72.

    Article  PubMed  CAS  Google Scholar 

  27. Cederblad B, Blomberg S, Vallin H, Perers A, Alm GV, Ronnblom L. Patients with systemic lupus erythematosus have reduced numbers of circulating natural interferon-alpha- producing cells. J Autoimmun 1998;11:465–70.

    Article  PubMed  CAS  Google Scholar 

  28. Pascual V, Farkas L, Banchereau J. Systemic lupus erythematosus: all roads lead to type I interferons. Curr Opin Immunol 2006;18:676–82.

    Article  PubMed  CAS  Google Scholar 

  29. Rönnblom L, Eloranta ML, Alm GV. The type I interferon system in systemic lupus erythematosus. Arthritis Rheum 2006;54:408–20.

    Article  PubMed  CAS  Google Scholar 

  30. Rhodes DA, Ihrke G, Reinicke AT, Malcherek G, Towey M, Isenberg DA, Trowsdale J. The 52 000 MW Ro/SS-A autoantigen in Sjögren’s syndrome/systemic lupus erythematosus (Ro52) is an interferon-gamma inducible tripartite motif protein associated with membrane proximal structures. Immunology 2002;106:246–56.

    Article  PubMed  CAS  Google Scholar 

  31. Gerl V, Hostmann B, Johnen C, Waka A, Gerl M, Schumann F, Klein R, Radbruch A, Hiepe F. The intracellular 52-kd Ro/SSA autoantigen in keratinocytes is up-regulated by tumor necrosis factor alpha via tumor necrosis factor receptor I. Arthritis Rheum 2005;52:531–8.

    Article  PubMed  CAS  Google Scholar 

  32. Rhodes DA, Trowsdale J. TRIM21 is a trimeric protein that binds IgG Fc via the B30.2 domain. Mol Immunol 2006;44:2406–14.

    Article  PubMed  CAS  Google Scholar 

  33. Kong HJ, Anderson DE, Lee CH, Jang MK, Tamura T, Tailor P, Cho HK, Cheong J, Xiong H, Morse HC 3rd, Ozato K. Cutting edge: autoantigen Ro52 is an interferon inducible E3 ligase that ubiquitinates IRF-8 and enhances cytokine expression in macrophages. J Immunol 2007;179:26–30.

    PubMed  CAS  Google Scholar 

  34. Sangfelt O, Erickson S, Grander D. Mechanisms of interferon-induced cell cycle arrest. Front Biosci 2000;5:D479–87.

    Article  PubMed  CAS  Google Scholar 

  35. Chawla-Sarkar M, Lindner DJ, Liu YF, Williams BR, Sen GC, Silverman RH, Borden EC. Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis. Apoptosis 2003;8:237–49.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by the Swedish Research Council, the Swedish Foundation for Strategic Research, Karolinska Institutet, Prof. Nanna Svartz’ Foundation, King Gustaf V:s 80-year Foundation, the Heart-Lung Foundation, and the Swedish Rheumatism Association. L. Strandberg and A. Ambrosi contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Wahren-Herlenius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strandberg, L., Ambrosi, A., Espinosa, A. et al. Interferon-α Induces Up-regulation and Nuclear Translocation of the Ro52 Autoantigen as Detected by a Panel of Novel Ro52-specific Monoclonal Antibodies. J Clin Immunol 28, 220–231 (2008). https://doi.org/10.1007/s10875-007-9157-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-007-9157-0

Keywords

Navigation