Skip to main content

Advertisement

Log in

Pharmacokinetic and Pharmacodynamic Relationship of AMG 811, An Anti-IFN-γ IgG1 Monoclonal Antibody, in Patients with Systemic Lupus Erythematosus

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To investigate the relationships between AMG 811 exposure, concentration changes in serum IFN-γ, and IFN-γ-induced protein 10 (CXCL10), and to identify important contributions of baseline covariates to these relationships.

Methods

A mechanism based pharmacokinetic (PK)-pharmacodynamic (PD) model was developed. A target mediated disposition model was used to describe AMG 811 and target IFN-γ interaction. CXCL10 was predicted to be driven by estimated free IFN-γ levels.

Results

For an average systemic lupus erythematosus (SLE) subject, the linear clearance (CL) of AMG 811 was 0.176 L/day, and the central (Vc) and peripheral (Vp) volumes of distribution were 1.48 and 2.12 L, respectively. Body weight was found to correlate with CL, Vc, Vp, and inter compartment clearance (Q); and age was found to correlate with Vc. The relationship between estimated free serum IFN-γ concentration levels and serum CXCL10 in logarithmic scales was best described by a linear model with slope and intercept estimated to be 0.197 and -0.3, respectively.

Conclusions

The largest observed reduction of serum CXCL10 concentration was achieved at the highest AMG 811 dose tested (180 mg SC). This model enables simulations of AMG 811 PK-PD profiles under various dosing regimens to support future clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Finkelman FD, Katona IM, Mosmann TR, Coffman RL. IFN-gamma regulates the isotypes of Ig secreted during in vivo humoral immune responses. J Immunol. 1988;140:1022–7.

    CAS  PubMed  Google Scholar 

  2. Boehm U, Klamp T, Groot M, Howard JC. Cellular responses to interferon-gamma. Annu Rev Immunol. 1997;15:749–95.

    Article  CAS  PubMed  Google Scholar 

  3. Rauch I, Muller M, Decker T. The regulation of inflammation by interferons and their STATs. JAKSTAT. 2013;2:e23820.

    PubMed Central  PubMed  Google Scholar 

  4. Theofilopoulos AN, Koundouris S, Kono DH, Lawson BR. The role of IFN-gamma in systemic lupus erythematosus: a challenge to the Th1/Th2 paradigm in autoimmunity. Arthritis Res. 2001;3:136–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Theofilopoulosand AN, Kono DH. Genetics of systemic autoimmunity and glomerulonephritis in mouse models of lupus. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. 16 Suppl 6:65–67 (2001).

  6. Lee JY, Goldman D, Piliero LM, Petri M, Sullivan KE. Interferon-gamma polymorphisms in systemic lupus erythematosus. Genes and immun. 2001;2:254–7.

    Article  CAS  Google Scholar 

  7. Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A. 2003;100:2610–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Funauchi M, Sugishima H, Minoda M, Horiuchi A. Serum level of interferon-gamma in autoimmune diseases. Tohoku J Exp Med. 1991;164:259–67.

    Article  CAS  PubMed  Google Scholar 

  9. Yokoyama H, Takabatake T, Takaeda M, Wada T, Naito T, Ikeda K, et al. Up-regulated MHC-class II expression and gamma-IFN and soluble IL-2R in lupus nephritis. Kidney Int. 1992;42:755–63.

    Article  CAS  PubMed  Google Scholar 

  10. al-Janadi M, al-Balla S, al-Dalaan A, Raziuddin S. Cytokine profile in systemic lupus erythematosus, rheumatoid arthritis, and other rheumatic diseases. J Clin Immunol. 1993;13:58–67.

    Article  CAS  PubMed  Google Scholar 

  11. Narumi S, Takeuchi T, Kobayashi Y, Konishi K. Serum levels of ifn-inducible PROTEIN-10 relating to the activity of systemic lupus erythematosus. Cytokine. 2000;12:1561–5.

    Article  CAS  PubMed  Google Scholar 

  12. Samsonov MY, Tilz GP, Egorova O, Reibnegger G, Balabanova RM, Nassonov EL, et al. Serum soluble markers of immune activation and disease activity in systemic lupus erythematosus. Lupus. 1995;4:29–32.

    Article  CAS  PubMed  Google Scholar 

  13. Hammon M, Herrmann M, Bleiziffer O, Pryymachuk G, Andreoli L, Munoz LE, et al. Role of guanylate binding protein-1 in vascular defects associated with chronic inflammatory diseases. J Cell Mol Med. 2011;15:1582–92.

    Article  CAS  PubMed  Google Scholar 

  14. Bauer JW, Petri M, Batliwalla FM, Koeuth T, Wilson J, Slattery C, et al. Interferon-regulated chemokines as biomarkers of systemic lupus erythematosus disease activity: a validation study. Arthritis Rheum. 2009;60:3098–107.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Martin DA, Boedigheimer M, Amoura Z, Kivitz A, Buyon J, Sanchez-Guerrero J, et al. AMG 811 (anti-IFN-gamma) treatment leads to a reduction in the whole blood IFN-signature and serum CXCL10 in Subjects with Systemic Lupus Erythematosus: Results of two Phase I Studies., the 77th Annual ACR meeting, San Diego, CA 2013.

  16. Hommes DW, Mikhajlova TL, Stoinov S, Stimac D, Vucelic B, Lonovics J, et al. Fontolizumab, a humanised anti-interferon gamma antibody, demonstrates safety and clinical activity in patients with moderate to severe Crohn’s disease. Gut. 2006;55:1131–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Magerand DE, Jusko WJ. General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn. 2001;28:507–32.

    Article  Google Scholar 

  18. Gibiansky L, Gibiansky E, Kakkar T, Ma P. Approximations of the target-mediated drug disposition model and identifiability of model parameters. J Pharmacokinet Pharmacodyn. 2008;35:573–91.

    Article  CAS  PubMed  Google Scholar 

  19. Ahn JE, Karlsson MO, Dunne A, Ludden TM. Likelihood based approaches to handling data below the quantification limit using NONMEM VI. J Pharmacokinet Pharmacodyn. 2008;35:401–21.

    Article  PubMed  Google Scholar 

  20. Mandema JW, Verotta D, Sheiner LB. Building population pharmacokinetic–pharmacodynamic models. I. Models for covariate effects. J Pharmacokinet Biopharm. 1992;20:511–28.

    Article  CAS  PubMed  Google Scholar 

  21. Doshi S, Chow A, Perez Ruixo JJ. Exposure-response modeling of darbepoetin alfa in anemic patients with chronic kidney disease not receiving dialysis. J Clin Pharmacol. 2010;50:75S–90S.

    Article  CAS  PubMed  Google Scholar 

  22. Radwanski E, Chakraborty A, Van Wart S, Huhn RD, Cutler DL, Affrime MB, et al. Pharmacokinetics and leukocyte responses of recombinant human interleukin-10. Pharm Res. 1998;15:1895–901.

    Article  CAS  PubMed  Google Scholar 

  23. Richter WF, Bhansali SG, Morris ME. Mechanistic determinants of biotherapeutics absorption following SC administration. AAPS J. 2012;14:559–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Sutjandra L, Rodriguez RD, Doshi S, Ma M, Peterson MC, Jang GR, et al. Population pharmacokinetic meta-analysis of denosumab in healthy subjects and postmenopausal women with osteopenia or osteoporosis. Clin Pharmacokinet. 2011;50:793–807.

    Article  CAS  PubMed  Google Scholar 

  25. Ng CM, Joshi A, Dedrick RL, Garovoy MR, Bauer RJ. Pharmacokinetic-pharmacodynamic-efficacy analysis of efalizumab in patients with moderate to severe psoriasis. Pharm Res. 2005;22:1088–100.

    Article  CAS  PubMed  Google Scholar 

  26. Wang W, Wang EQ, Balthasar JP. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008;84:548–58.

    Article  CAS  PubMed  Google Scholar 

  27. Manolios N, Schrieber L, Nelson M, Geczy CL. Enhanced interferon-gamma (IFN) production by lymph node cells from autoimmune (MRL/1, MRL/n) mice. Clin Exp Immunol. 1989;76:301–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Fanand X, Wuthrich RP. Upregulation of lymphoid and renal interferon-gamma mRNA in autoimmune MRL-Fas (lpr) mice with lupus nephritis. Inflammation. 1997;21:105–12.

    Article  Google Scholar 

  29. Dirksand NL, Meibohm B. Population pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49:633–59.

    Article  Google Scholar 

  30. Ma P, Yang BB, Wang YM, Peterson M, Narayanan A, Sutjandra L, et al. Population pharmacokinetic analysis of panitumumab in patients with advanced solid tumors. J Clin Pharmacol. 2009;49:1142–56.

    Article  CAS  PubMed  Google Scholar 

  31. Frey N, Grange S, Woodworth T. Population pharmacokinetic analysis of tocilizumab in patients with rheumatoid arthritis. J Clin Pharmacol. 2010;50:754–66.

    Article  CAS  PubMed  Google Scholar 

  32. Tang L, Persky AM, Hochhaus G, Meibohm B. Pharmacokinetic aspects of biotechnology products. J Pharm Sci. 2004;93:2184–204.

    Article  CAS  PubMed  Google Scholar 

  33. Utsal L, Tillmann V, Zilmer M, Maestu J, Purge P, Jurimae J, et al. Elevated serum IL-6, IL-8, MCP-1, CRP, and IFN-gamma levels in 10- to 11-year-old boys with increased BMI. Horm res in paediatr. 2012;78:31–9.

    Article  CAS  Google Scholar 

  34. Shurin GV, Yurkovetsky ZR, Chatta GS, Tourkova IL, Shurin MR, Lokshin AE. Dynamic alteration of soluble serum biomarkers in healthy aging. Cytokine. 2007;39:123–9.

    Article  CAS  PubMed  Google Scholar 

  35. Bergstrandand M, Karlsson MO. Handling data below the limit of quantification in mixed effect models. AAPS J. 2009;11:371–80.

    Article  Google Scholar 

  36. Tokano Y, Morimoto S, Kaneko H, Amano H, Nozawa K, Takasaki Y, et al. Levels of IL-12 in the sera of patients with systemic lupus erythematosus (SLE)–relation to Th1- and Th2-derived cytokines. Clin Exp Immunol. 1999;116:169–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Yan X, Mager DE, Krzyzanski W. Selection between Michaelis-Menten and target-mediated drug disposition pharmacokinetic models. J Pharmacokinet Pharmacodyn. 2010;37:25–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Ma P. Theoretical considerations of target-mediated drug disposition models: simplifications and approximations. Pharm Res. 2012;29:866–82.

    Article  CAS  PubMed  Google Scholar 

  39. Thompson JA, Lee DJ, Cox WW, Lindgren CG, Collins C, Neraas KA, et al. Recombinant interleukin 2 toxicity, pharmacokinetics, and immunomodulatory effects in a phase I trial. Cancer Res. 1987;47:4202–7.

    CAS  PubMed  Google Scholar 

  40. Gutterman JU, Rosenblum MG, Rios A, Fritsche HA, Quesada JR. Pharmacokinetic study of partially pure gamma-interferon in cancer patients. Cancer Res. 1984;44:4164–71.

    CAS  PubMed  Google Scholar 

  41. Turner PK, Houghton JA, Petak I, Tillman DM, Douglas L, Schwartzberg L, et al. Interferon-gamma pharmacokinetics and pharmacodynamics in patients with colorectal cancer. Cancer Chemother Pharmacol. 2004;53:253–60.

    Article  CAS  PubMed  Google Scholar 

  42. Luster AD, Unkeless JC, Ravetch JV. Gamma-interferon transcriptionally regulates an early-response gene containing homology to platelet proteins. Nature. 1985;315:672–6.

    Article  CAS  PubMed  Google Scholar 

  43. Kong KO, Tan AW, Thong BY, Lian TY, Cheng YK, Teh CL, et al. Enhanced expression of interferon-inducible protein-10 correlates with disease activity and clinical manifestations in systemic lupus erythematosus. Clin Exp Immunol. 2009;156:134–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Rose T, Grutzkau A, Hirseland H, Huscher D, Dahnrich C, Dzionek A, et al. IFNalpha and its response proteins, IP-10 and SIGLEC-1, are biomarkers of disease activity in systemic lupus erythematosus. Ann Rheum Dis. 2013;72:1639–45.

    Article  CAS  PubMed  Google Scholar 

  45. Dominguez-Gutierrez PR, Ceribelli A, Satoh M, Sobel ES, Reeves WH, Chan EK. Reduced levels of CCL2 and CXCL10 in systemic lupus erythematosus patients under treatment with prednisone, mycophenolate mofetil, or hydroxychloroquine, except in a high STAT1 subset. Arthritis res & ther. 2014;16:R23.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors thank all the patients, the investigators, and their medical, nursing, and laboratory staff who participated in the clinical studies included in the present analysis. These studies were sponsored by Amgen Inc., which was involved in the study design, data collection, analysis, interpretation, writing the manuscript, and the decision to submit the manuscript for publication. Ping Chen, Thuy Vu, Adimoolam Narayanan, Winnie Sohn, Jin Wang, Michael Boedigheimer, Andrew Welcher, Barbara Sullivan, David Martin, and Juan Jose Perez Ruixo are employees of Amgen Inc. and own stock in Amgen Inc. at the time this analysis was conducted. Peiming Ma is a former employee of Amgen Inc. The authors have no other conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Vu, T., Narayanan, A. et al. Pharmacokinetic and Pharmacodynamic Relationship of AMG 811, An Anti-IFN-γ IgG1 Monoclonal Antibody, in Patients with Systemic Lupus Erythematosus. Pharm Res 32, 640–653 (2015). https://doi.org/10.1007/s11095-014-1492-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1492-2

KEY WORDS

Navigation