Skip to main content

Advertisement

Log in

Oxidative stress and endothelial dysfunction in vascular disease

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

In response to physiologic stimuli, endothelial cells dynamically regulate arterial vascular tone by producing vasodilators and vasoconstrictors. Risk factors for atherosclerosis, such as diabetes, smoking, hypercholesterolemia, and hypertension, interfere with this response, promoting endothelial dysfunction and atherosclerosis. This review explores whether oxidative stress might be a common feature of both endothelial dysfunction and atherosclerosis. Using biomarkers to assess endothelial function might provide insights into the pathways for oxidative stress in vascular disease. However, currently available markers of oxidative stress and endothelial function are unsuitable for routine clinical use because they are too expensive and inadequately validated. Thus, there is a need to develop and validate new markers that could be used to both measure oxidative stress and monitor therapies that specifically interrupt oxidative pathways in vascular tissue. Such markers might eventually help to identify susceptible individuals at a stage when cardiovascular complications could be prevented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Deanfield JE, Halcox JP, Rabelink TJ: Endothelial function and dysfunction: testing and clinical relevance. Circulation 2007, 115:1285–1295.

    PubMed  Google Scholar 

  2. Bonetti PO, Lerman LO, Lerman A: Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol 2003, 23:168–175.

    Article  PubMed  CAS  Google Scholar 

  3. Ross R: Atherosclerosis—an inflammatory disease. N Engl J Med 1999, 340:115–126.

    Article  PubMed  CAS  Google Scholar 

  4. Ames BN, Shigenaga MK, Hagen TM: Oxidants, antioxidants and the degenerative diseases of aging. Proc Natl Acad Sci U S A 1993, 90:7915–7922.

    Article  PubMed  CAS  Google Scholar 

  5. Chait A, Han CY, Oram JF, Heinecke JW: Thematic review series: the immune system and atherogenesis. Lipoproteinassociated inflammatory proteins: markers or mediators of cardiovascular disease? J Lipid Res 2005, 46:389–403.

    Article  PubMed  CAS  Google Scholar 

  6. Pennathur S, Heinecke JW: Mechanisms for oxidative stress in diabetic cardiovascular disease. Antioxid Redox Signal 2007, In press.

  7. Brownlee M: Biochemistry and molecular cell biology of diabetic complications. Nature 2001, 414:813–820.

    Article  PubMed  CAS  Google Scholar 

  8. Baynes JW, Thorpe SR: Glycoxidation and lipoxidation in atherogenesis. Free Radic Biol Med 2000, 28:1708–1716.

    Article  PubMed  CAS  Google Scholar 

  9. Brown MS, Goldstein JL: Koch’s postulates for cholesterol. Cell 1992, 71:187–188.

    Article  PubMed  CAS  Google Scholar 

  10. Cai H: NAD(P)H oxidase-dependent self-propagation of hydrogen peroxide and vascular disease. Circ Res 2005, 96:818–822.

    Article  PubMed  CAS  Google Scholar 

  11. Guzik TJ, Harrison DG: Vascular NADPH oxidases as drug targets for novel antioxidant strategies. Drug Discov Today 2006, 11:524–533.

    Article  PubMed  CAS  Google Scholar 

  12. Rask-Madsen C, King GL: Mechanisms of disease: endothelial dysfunction in insulin resistance and diabetes. Nat Clin Pract Endocrinol Metab 2007, 3:46–56.

    Article  PubMed  CAS  Google Scholar 

  13. Pennathur S, Ido Y, Heller JI, et al.: Reactive carbonyls and polyunsaturated fatty acids produce a hydroxyl radical-like species: a potential pathway for oxidative damage of retinal proteins in diabetes. J Biol Chem 2005, 280:22706–22714.

    Article  PubMed  CAS  Google Scholar 

  14. Pennathur S, Wagner JD, Leeuwenburgh C, et al.: A hydroxyl radical-like species oxidizes cynomolgus monkey artery wall proteins in early diabetic vascular disease. J Clin Invest 2001, 107:853–860.

    PubMed  CAS  Google Scholar 

  15. Ohara Y, Peterson TE, Sayegh HS, et al.: Dietary correction of hypercholesterolemia in the rabbit normalizes endothelial superoxide anion production. Circulation 1995, 92:898–903.

    PubMed  CAS  Google Scholar 

  16. Laursen JB, Rajagopalan S, Galis Z, et al.: Role of superoxide in angiotensin II-induced but not catecholamine-induced hypertension. Circulation 1997, 95:588–593.

    PubMed  CAS  Google Scholar 

  17. Ting HH, Timimi FK, Boles KS, et al.: Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 1996, 97:22–28.

    PubMed  CAS  Google Scholar 

  18. Ting HH, Timimi FK, Haley EA, et al.: Vitamin C improves endothelium-dependent vasodilation in forearm resistance vessels of humans with hypercholesterolemia. Circulation 1997, 95:2617–2622.

    PubMed  CAS  Google Scholar 

  19. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Heart Outcomes Prevention Evaluation Study Investigators [no authors listed]. Lancet 2000, 355:253–259.

  20. Guzik TJ, West NE, Black E, et al.: Vascular superoxide production by NAD(P)H oxidase: association with endothelial dysfunction and clinical risk factors. Circ Res 2000, 86:E85–E90.

    PubMed  CAS  Google Scholar 

  21. Landmesser U, Dikalov S, Price SR, et al.: Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 2003, 111:1201–1209.

    Article  PubMed  CAS  Google Scholar 

  22. Vasquez-Vivar J, Kalyanaraman B, Martasek P, et al.: Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci U S A 1998, 95:9220–9225.

    Article  PubMed  CAS  Google Scholar 

  23. Ludmer PL, Selwyn AP, Shook TL, et al.: Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med 1986, 315:1046–1051.

    Article  PubMed  CAS  Google Scholar 

  24. Anderson TJ, Uehata A, Gerhard MD, et al.: Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol 1995, 26:1235–1241.

    Article  PubMed  CAS  Google Scholar 

  25. Goligorsky MS: Clinical assessment of endothelial dysfunction: combine and rule. Curr Opin Nephrol Hypertens 2006, 15:617–624.

    Article  PubMed  CAS  Google Scholar 

  26. Corretti MC, Anderson TJ, Benjamin EJ, et al.: Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol 2002, 39:257–265.

    Article  PubMed  Google Scholar 

  27. Berliner JA, Heinecke JW: The role of oxidized lipoproteins in atherogenesis. Free Radic Biol Med 1996, 20:707–727.

    Article  PubMed  CAS  Google Scholar 

  28. Penny WF, Ben-Yehuda O, Kuroe K, et al.: Improvement of coronary artery endothelial dysfunction with lipid-lowering therapy: heterogeneity of segmental response and correlation with plasma-oxidized low density lipoprotein. J Am Coll Cardiol 2001, 37:766–774.

    Article  PubMed  CAS  Google Scholar 

  29. Tsimikas S, Brilakis ES, Miller ER, et al.: Oxidized phospholipids, Lp(a) lipoprotein, and coronary artery disease. N Engl J Med 2005, 353:46–57.

    Article  PubMed  CAS  Google Scholar 

  30. Daugherty A, Dunn JL, Rateri DL, Heinecke JW: Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest 1994, 94:437–444.

    PubMed  CAS  Google Scholar 

  31. Klebanoff SJ: Myeloperoxidase: friend and foe. J Leukoc Biol 2005, 77:598–625.

    Article  PubMed  CAS  Google Scholar 

  32. Fu X, Kassim SY, Parks WC, Heinecke JW: Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin (MMP-7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase. J Biol Chem 2001, 276:41279–41287.

    Article  PubMed  CAS  Google Scholar 

  33. Baldus S, Rudolph V, Roiss M, et al.: Heparins increase endothelial nitric oxide bioavailability by liberating vessel-immobilized myeloperoxidase. Circulation 2006, 113:1871–1878.

    Article  PubMed  CAS  Google Scholar 

  34. Gaut JP, Byun J, Tran HD, et al.: Myeloperoxidase produces nitrating oxidants in vivo. J Clin Invest 2002, 109:1311–1319.

    Article  PubMed  CAS  Google Scholar 

  35. McMillen TS, Heinecke JW, LeBoeuf RC: Expression of human myeloperoxidase by macrophages promotes atherosclerosis in mice. Circulation 2005, 111:2798–2804.

    Article  PubMed  CAS  Google Scholar 

  36. Asselbergs FW, Reynolds WF, Cohen-Tervaert JW, et al.: Myeloperoxidase polymorphism related to cardiovascular events in coronary artery disease. Am J Med 2004, 116:429–430.

    Article  PubMed  CAS  Google Scholar 

  37. Zhang R, Brennan ML, Fu X, et al.: Association between myeloperoxidase levels and risk of coronary artery disease. JAMA 2001, 286:2136–2142.

    Article  PubMed  CAS  Google Scholar 

  38. Vita JA, Brennan ML, Gokce N, et al.: Serum myeloperoxidase levels independently predict endothelial dysfunction in humans. Circulation 2004, 110:1134–1139.

    Article  PubMed  CAS  Google Scholar 

  39. Bergt C, Pennathur S, Fu X, et al.: The myeloperoxidase product hypochlorous acid oxidizes HDL in the human artery wall and impairs ABCA1-dependent cholesterol transport. Proc Natl Acad Sci U S A 2004, 101:13032–13037.

    Article  PubMed  CAS  Google Scholar 

  40. Pennathur S, Bergt C, Shao B, et al.: Human atherosclerotic intima and blood of patients with established coronary artery disease contain high density lipoprotein damaged by reactive nitrogen species. J Biol Chem 2004, 279:42977–42983.

    Article  PubMed  CAS  Google Scholar 

  41. Zheng L, Nukuna B, Brennan ML, et al.: Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J Clin Invest 2004, 114:529–541.

    Article  PubMed  CAS  Google Scholar 

  42. Packard CJ, O’Reilly DS, Caslake MJ, et al.: Lipoprotein-associated phospholipase A2 as an independent predictor of coronary heart disease. West of Scotland Coronary Prevention Study Group. N Engl J Med 2000, 343:1148–1155.

    Article  PubMed  CAS  Google Scholar 

  43. Ballantyne CM, Hoogeveen RC, Bang H, et al.: Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident coronary heart disease in middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) study. Circulation 2004, 109:837–842.

    Article  PubMed  CAS  Google Scholar 

  44. Yang EH, McConnell JP, Lennon RJ, et al.: Lipoprotein-associated phospholipase A2 is an independent marker for coronary endothelial dysfunction in humans. Arterioscler Thromb Vasc Biol 2006, 26:106–111.

    Article  PubMed  CAS  Google Scholar 

  45. Szuba A, Podgorski M: Asymmetric dimethylarginine (ADMA) a novel cardiovascular risk factor—evidence from epidemiological and prospective clinical trials. Pharmacol Rep 2006, 58(suppl):16–20.

    PubMed  Google Scholar 

  46. Schnabel R, Blankenberg S, Lubos E, et al.: Asymmetric dimethylarginine and the risk of cardiovascular events and death in patients with coronary artery disease: results from the AtheroGene Study. Circ Res 2005, 97:e53–e59.

    Article  PubMed  CAS  Google Scholar 

  47. Morrow JD, Roberts LJ 2nd: Mass spectrometric quantification of F2-isoprostanes in biological fluids and tissues as measure of oxidant stress. Methods Enzymol 1999, 300:3–12.

    PubMed  CAS  Google Scholar 

  48. Pratico D, Iuliano L, Mauriello A, et al.: Localization of distinct F2-isoprostanes in human atherosclerotic lesions. J Clin Invest 1997, 100:2028–2034.

    Article  PubMed  CAS  Google Scholar 

  49. Reilly MP, Pratico D, Delanty N, et al.: Increased formation of distinct F2 isoprostanes in hypercholesterolemia. Circulation 1998, 98:2822–2828.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramaniam Pennathur MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pennathur, S., Heinecke, J.W. Oxidative stress and endothelial dysfunction in vascular disease. Curr Diab Rep 7, 257–264 (2007). https://doi.org/10.1007/s11892-007-0041-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-007-0041-3

Keywords

Navigation