Skip to main content

Advertisement

Log in

Pathophysiology of Cutaneous Lupus Erythematosus

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Cutaneous lupus erythematosus (LE; syn LE-specific skin disease) is an autoimmune disease with well-defined skin manifestations often accentuated in a photodistribution and frequently associated with specific autoantibodies. These clinical observations have led to numerous laboratory studies related to the role of ultraviolet light, as well as studies of the cascade of immunologic events involved in the pathogenesis of cutaneous LE. We discuss the epidemiologic, clinical, and laboratory findings of cutaneous LE, including the classification of disease subsets. We review the evidence for abnormal photoreactivity in LE with an overview of the cellular, molecular, and genetic factors that may underlie this abnormality. As there is yet no convincing animal model of cutaneous LE, many studies remain descriptive in nature. To arrive at an understanding of the potential mechanisms underlying the development of cutaneous lupus, we discuss the role of ultraviolet light-mediated induction of apoptosis, antigen presentation, genetic factors, and mediators of inflammation. In addition, we consider the role and importance of humoral and cellular factors, synthesizing the current understanding of the pathophysiology of cutaneous lupus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF, Schaller JG, Talal N, Winchester RJ (1982) The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 25:1271–1277

    PubMed  CAS  Google Scholar 

  2. Tebbe B, Orfanos CE (1997) Epidemiology and socioeconomic impact of skin disease in lupus erythematosus. Lupus 6:96–104

    PubMed  CAS  Google Scholar 

  3. Wallace DJ, Pistiner M, Nessim S, Metzger AL, Klinenberg JR (1992) Cutaneous lupus erythematosus without systemic lupus erythematosus: clinical and laboratory features. Semin Arthritis Rheum. 21:221–226

    PubMed  CAS  Google Scholar 

  4. Michet CJ Jr, McKenna CH, Elveback LR, Kaslow RA, Kurland LT (1985) Epidemiology of systemic lupus erythematosus and other connective tissue diseases in Rochester, Minnesota, 1950 through 1979. Mayo Clin Proc 60:105–113

    PubMed  Google Scholar 

  5. Lee C, Kim J (1997) Clinical features of subacute cutaneous lupus erythematosus among Korean patients with lupus erythematosus. Kor J Dermatol 35:82–87

    Google Scholar 

  6. Sontheimer R (1989) Subacute cutaneous lupus erythematosus: a decade’s perspective. Med Clin North Am 73:1073–1090

    PubMed  CAS  Google Scholar 

  7. Werth VP (2005) Clinical manifestations of cutaneous lupus erythematosus. Autoimmun Rev 4:296–302

    PubMed  Google Scholar 

  8. Petri M (2005) Review of classification criteria for systemic lupus erythematosus. Rheum Dis Clin North Am 31:245–54, vi

    PubMed  Google Scholar 

  9. Albrecht J, Berlin JA, Braverman IM, Callen JP, Connolly MK, Costner MI, Dutz J, Fivenson D, Franks AG, Jorizzo JL, Lee LA, McCauliffe DP, Sontheimer RD, Werth VP (2004) Dermatology position paper on the revision of the 1982 ACR criteria for systemic lupus erythematosus. Lupus 13:839–849

    PubMed  CAS  Google Scholar 

  10. Sontheimer RD, Thomas JR, Gilliam JN (1979) Subacute cutaneous lupus erythematosus: a cutaneous marker for a distinct lupus erythematosus subset. Arch Dermatol 115:1409–1415

    PubMed  CAS  Google Scholar 

  11. Sontheimer RD (2005) Subacute cutaneous lupus erythematosus: 25-year evolution of a prototypic subset (subphenotype) of lupus erythematosus defined by characteristic cutaneous, pathological, immunological, and genetic findings. Autoimmun Rev 4:253–263

    PubMed  CAS  Google Scholar 

  12. Petri M (1998) Dermatologic lupus: Hopkins lupus cohort. Semin Cutan Med Surg 17:219–227

    PubMed  CAS  Google Scholar 

  13. Sontheimer RD, Maddison PJ, Reichlin M, Jordon RE, Stastny P, Gilliam JN (1982) Serologic and HLA associations in subacute cutaneous lupus erythematosus, a clinical subset of lupus erythematosus. Ann Intern Med 97:664–671

    PubMed  CAS  Google Scholar 

  14. Pistiner M, Wallace DJ, Nessim S, Metzger AL, Klinenberg JR (1991) Lupus erythematosus in the 1980s: a survey of 570 patients. Semin Arthritis Rheum 21:55–64

    PubMed  CAS  Google Scholar 

  15. Wallace DJ, Lyon I (1999) Pierre Cazenave and the first detailed modern description of lupus erythematosus. Semin Arthritis Rheum 28:305–313

    PubMed  CAS  Google Scholar 

  16. Kesten BM, Slatkin M (1953) Diseases related to light sensitivity. AMA Arch Derm Syphilol 67:284–301

    PubMed  CAS  Google Scholar 

  17. Epstein JH, Tuffanelli D, Dubois EL (1965) Light sensitivity and lupus erythematosus. Arch Dermatol 91:483–485

    PubMed  CAS  Google Scholar 

  18. Baer RL, Harber LC (1965) Photobiology of lupus erythematosus. Arch Dermatol 92:124–128

    Google Scholar 

  19. Cripps DJ, Rankin J (1973) Action spectra of lupus erythematosus and experimental immunofluorescence. Arch Dermatol 107:563–567

    PubMed  CAS  Google Scholar 

  20. Wolska H, Blaszczyk M, Jablonska S (1989) Phototests in patients with various forms of lupus erythematosus. Int J Dermatol 28:98–103

    PubMed  CAS  Google Scholar 

  21. Doria A, Biasinutto C, Ghirardello A, Sartori E, Rondinone R, Piccoli A, Veller FC, Gambari PF (1996) Photosensitivity in systemic lupus erythematosus: laboratory testing of ARA/ACR definition. Lupus 5:263–268

    PubMed  CAS  Google Scholar 

  22. Sanders CJ, van Weelden H, Kazzaz GA, Sigurdsson V, Toonstra J, Bruijnzeel-Koomen CA (2003) Photosensitivity in patients with lupus erythematosus: a clinical and photobiological study of 100 patients using a prolonged phototest protocol. Br J Dermatol 149:131–137

    PubMed  CAS  Google Scholar 

  23. Azizah MR, Azila MN, Zulkifli MN, Norita TY (1996) The prevalence of antinuclear, anti-dsDNA, anti-Sm and anti-RNP antibodies in a group of healthy blood donors. Asian Pac J Allergy Immunol 14:125–128

    PubMed  CAS  Google Scholar 

  24. Hanvivatvong O, Tirawatnapong S, Kaowopas Y, Jitapankul S (2003) Prevalence of autoantibodies in Thai elderly. J Med Assoc Thai 86(Suppl 2):S242–S249

    PubMed  Google Scholar 

  25. Vella FS, Orlando P, Attanasi F, Simone B, Mundo A, Lopalco P, Schiraldi O, Antonaci S (2001) Autoantibodies in chronic hepatitis C. Markers of autoimmunity or non-specific events? Recenti Prog Med 92:107–112

    PubMed  CAS  Google Scholar 

  26. Wasmuth HE, Stolte C, Geier A, Dietrich CG, Gartung C, Lorenzen J, Matern S, Lammert F (2004) The presence of non-organ-specific autoantibodies is associated with a negative response to combination therapy with interferon and ribavirin for chronic hepatitis C. BMC Infect Dis 4:4

    PubMed  Google Scholar 

  27. Atzeni F, Turiel M, Capsoni F, Doria A, Meroni P, Sarzi-Puttini P (2005) Autoimmunity and anti-TNF-alpha agents. Ann N Y Acad Sci 1051:559–569

    PubMed  CAS  Google Scholar 

  28. David-Bajar KM, Davis BM (1997) Pathology, immunopathology, and immunohistochemistry in cutaneous lupus erythematosus. Lupus 6:145–157

    PubMed  CAS  Google Scholar 

  29. Ueki H, Wolff HH, Braun-Falco O (1974) Cutaneous localization of human gamma-globulins in lupus erythematosus. An electron-microscopical study using the peroxidase-labeled antibody technique. Arch Dermatol Forsch 248:297–314

    PubMed  CAS  Google Scholar 

  30. Gilliam JN (1975) The significance of cutaneous immunoglobulin deposits in lupus erythematosus and NZB/NZW F1 hybrid mice. J Invest Dermatol 65:154–161

    PubMed  CAS  Google Scholar 

  31. Alahlafi AM, Wordsworth P, Wojnarowska F (2004) The lupus band: do the autoantibodies target collagen VII? Br J Dermatol 150:504–510

    PubMed  CAS  Google Scholar 

  32. Lee LA, Roberts CM, Frank MB, McCubbin VR, Reichlin M (1994) The autoantibody response to Ro/SSA in cutaneous lupus erythematosus. Arch Dermatol 130:1262–1268

    PubMed  CAS  Google Scholar 

  33. Pinkus H (1973), Lichenoid tissue reactions. A speculative review of the clinical spectrum of epidermal basal cell damage with special reference to erythema dyschromicum perstans. Arch Dermatol 107:840–846

    PubMed  CAS  Google Scholar 

  34. de Jong EM, van Erp PE, Ruiter DJ, van de Kerkhof PC (1991) Immunohistochemical detection of proliferation and differentiation in discoid lupus erythematosus. J Am Acad Dermatol 25:1032–1038

    PubMed  Google Scholar 

  35. Albrecht J, Taylor L, Berlin JA, Dulay S, Ang G, Fakharzadeh S, Kantor J, Kim E, Militello G, McGinnis K, Richardson S, Treat J, Vittorio C, Van Voorhees A, Werth VP (2005) The CLASI (cutaneous lupus erythematosus disease area and severity index): an outcome instrument for cutaneous lupus erythematosus. J Invest Dermatol 125:889–894

    PubMed  CAS  Google Scholar 

  36. Bonilla-Martinez Z, Albrecht J, Taylor L, Okawa J, Werth VP (2006) The CLASI (cutaneous le disease area and severity index): an outcome instrument for cutaneous lupus erythematosus. J Investig Dermatol 126:47–47

    Google Scholar 

  37. Freeman RG, Knox JM, Owens DW (1969) Cutaneous lesions of lupus erythematosus induced by monochromatic light. Arch Dermatol 100:677–682

    PubMed  CAS  Google Scholar 

  38. Kochevar IE (1985) Action spectrum and mechanisms of UV radiation-induced injury in lupus erythematosus. J Invest Dermatol 85:140s–143s

    PubMed  CAS  Google Scholar 

  39. Dowdy MJ, Nigra TP, Barth WF (1989) Subacute cutaneous lupus erythematosus during PUVA therapy for psoriasis: case report and review of the literature. Arthritis Rheum 32:343–346

    PubMed  CAS  Google Scholar 

  40. Fruchter O, Edoute Y (2005) First presentation of systemic lupus erythematosus following ultraviolet radiation exposure in an artificial tanning device. Rheumatology (Oxford) 44:558–559

    CAS  Google Scholar 

  41. Stern RS, Docken W (1986) An exacerbation of SLE after visiting a tanning salon. JAMA 255:3120

    Google Scholar 

  42. Lehmann P, Holzle E, Kind P, Goerz G, Plewig G (1990) Experimental reproduction of skin lesions in lupus erythematosus by UVA and UVB radiation. J Am Acad Dermatol 22:181–187

    PubMed  CAS  Google Scholar 

  43. Kuhn A, Sonntag M, Richter-Hintz D, Oslislo C, Megahed M, Ruzicka T, Lehmann P (2001) Phototesting in lupus erythematosus: a 15-year experience. J Am Acad Dermatol 45:86–95

    PubMed  CAS  Google Scholar 

  44. Nived O, Johansen PB, Sturfelt G (1993) Standardized ultraviolet A exposure provokes skin reaction in systemic lupus erythematosus. Lupus 2:247–250

    PubMed  CAS  Google Scholar 

  45. Wysenbeek AJ, Block DA, Fries JF (1989) Prevalence and expression of photosensitivity in systemic lupus erythematosus. Ann Rheum Dis 48:461–463

    PubMed  CAS  Google Scholar 

  46. Walchner M, Messer G, Kind P (1997) Phototesting and photoprotection in LE. Lupus 6:167–174

    PubMed  CAS  Google Scholar 

  47. Krause I, Shraga I, Molad Y, Guedj D, Weinberger A (1997) Seasons of the year and activity of SLE and Behcet’s disease. Scand J Rheumatol 26:435–439

    Article  PubMed  CAS  Google Scholar 

  48. Leone J, Pennaforte JL, Delhinger V, Detour J, Lefondre K, Eschard JP, Etienne JC (1997) Influence of seasons on risk of flare-up of systemic lupus: retrospective study of 66 patients. Rev Med Interne 18:286–291

    PubMed  CAS  Google Scholar 

  49. Bengtsson AA, Rylander L, Hagmar L, Nived O, Sturfelt G (2002) Risk factors for developing systemic lupus erythematosus: a case-control study in southern Sweden. Rheumatology (Oxford) 41:563–571

    CAS  Google Scholar 

  50. Zamansky GB, Chou IN (1990) Disruption of keratin intermediate filaments by ultraviolet radiation in cultured human keratinocytes. Photochem Photobiol 52:903–906

    PubMed  CAS  Google Scholar 

  51. LeFeber WP, Norris DA, Ryan SR, Huff JC, Lee LA, Kubo M, Boyce ST, Kotzin BL, Weston WL (1984) Ultraviolet light induces binding of antibodies to selected nuclear antigens on cultured human keratinocytes. J Clin Invest 74:1545–1551

    PubMed  CAS  Google Scholar 

  52. Golan TD, Elkon KB, Gharavi AE, Krueger JG (1992) Enhanced membrane binding of autoantibodies to cultured keratinocytes of systemic lupus erythematosus patients after ultraviolet B/ultraviolet A irradiation. J Clin Invest 90:1067–1076

    PubMed  CAS  Google Scholar 

  53. Casciola-Rosen LA, Anhalt G, Rosen A (1994) Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med 179:1317–1330

    PubMed  CAS  Google Scholar 

  54. Casciola-Rosen L, Rosen A (1997) Ultraviolet light-induced keratinocyte apoptosis: a potential mechanism for the induction of skin lesions and autoantibody production in LE. Lupus 6:175–180

    PubMed  CAS  Google Scholar 

  55. Tan EM (1994) Autoimmunity and apoptosis. J Exp Med 179:1083–1086

    PubMed  CAS  Google Scholar 

  56. Vaux DL (1993) Toward an understanding of the molecular mechanisms of physiological cell death. Proc Natl Acad Sci USA 90:786–789

    PubMed  CAS  Google Scholar 

  57. Savill J, Fadok V, Henson P, Haslett C (1993) Phagocyte recognition of cells undergoing apoptosis. Immunol Today 14:131–136

    PubMed  CAS  Google Scholar 

  58. Savill J (1998) Apoptosis. Phagocytic docking without shocking. Nature 392:442–443

    PubMed  CAS  Google Scholar 

  59. Weedon D, Strutton G (1981) Apoptosis as the mechanism of the involution of hair follicles in catagen transformation. Acta Derm Venereol 61:335–339

    PubMed  CAS  Google Scholar 

  60. Budtz PE, Spies I (1989) Epidermal tissue homeostasis: apoptosis and cell emigration as mechanisms of controlled cell deletion in the epidermis of the toad, Bufo bufo. Cell Tissue Res 256:475–486

    PubMed  CAS  Google Scholar 

  61. McCall CA, Cohen JJ (1991) Programmed cell death in terminally differentiating keratinocytes: role of endogenous endonuclease. J Invest Dermatol 97:111–114

    PubMed  CAS  Google Scholar 

  62. Seitz CS, Freiberg RA, Hinata K, Khavari PA (2000) NF-kappaB determines localization and features of cell death in epidermis. J Clin Invest 105:253–260

    PubMed  CAS  Google Scholar 

  63. Norris DA, Whang K, David-Bajar K, Bennion SD (1997) The influence of ultraviolet light on immunological cytotoxicity in the skin. Photochem Photobiol 65:636–646

    PubMed  CAS  Google Scholar 

  64. Daniels FJ (1961) Histochemical responses of human skin following ultraviolet radiation. 37:351–356

  65. Godar DE (1999) UVA1 radiation triggers two different final apoptotic pathways. J Invest Dermatol 112:3–12

    PubMed  CAS  Google Scholar 

  66. Aragane Y, Kulms D, Metze D, Wilkes G, Poppelmann B, Luger TA, Schwarz T (1998) Ultraviolet light induces apoptosis via direct activation of CD95 (Fas/APO-1) independently of its ligand CD95L. J Cell Biol 140:171–182

    PubMed  CAS  Google Scholar 

  67. Hill LL, Ouhtit A, Loughlin SM, Kripke ML, Ananthaswamy HN, Owen-Schaub LB (1999) Fas ligand: a sensor for DNA damage critical in skin cancer etiology. Science 285:898–900

    PubMed  CAS  Google Scholar 

  68. Qin JZ, Bacon P, Panella J, Sitailo LA, Denning MF, Nickoloff BJ (2004) Low-dose UV-radiation sensitizes keratinocytes to TRAIL-induced apoptosis. J Cell Physiol 200:155–166

    PubMed  CAS  Google Scholar 

  69. Schwarz A, Bhardwaj R, Aragane Y, Mahnke K, Riemann H, Metze D, Luger TA, Schwarz T (1995) Ultraviolet-B-induced apoptosis of keratinocytes: evidence for partial involvement of tumor necrosis factor-alpha in the formation of sunburn cells. J Invest Dermatol 104:922–927

    PubMed  CAS  Google Scholar 

  70. Zhuang L, Wang B, Shinder GA, Shivji GM, Mak TW, Sauder DN (1999) TNF receptor p55 plays a pivotal role in murine keratinocyte apoptosis induced by ultraviolet B irradiation. J Immunol 162:1440–1447

    PubMed  CAS  Google Scholar 

  71. Kulms D, Poppelmann B, Yarosh D, Luger TA, Krutmann J, Schwarz T (1999) Nuclear and cell membrane effects contribute independently to the induction of apoptosis in human cells exposed to UVB radiation. Proc Natl Acad Sci U S A 96:7974–7979

    PubMed  CAS  Google Scholar 

  72. Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, Yuan J (1996) Human ICE/CED-3 protease nomenclature. Cell 87:171

    PubMed  CAS  Google Scholar 

  73. Takahashi H, Kinouchi M, Iizuka H (1997) Interleukin-1beta-converting enzyme and CPP32 are involved in ultraviolet B-induced apoptosis of SV40-transformed human keratinocytes. Biochem Biophys Res Commun 236:194–198

    PubMed  CAS  Google Scholar 

  74. Kuhn A, Herrmann M, Kleber S, Beckmann-Welle M, Fehsel K, Martin-Villalba A, Lehmann P, Ruzicka T, Krammer PH, Kolb-Bachofen V (2006) Accumulation of apoptotic cells in the epidermis of patients with cutaneous lupus erythematosus after ultraviolet irradiation. Arthritis Rheum 54:939–950

    PubMed  Google Scholar 

  75. Chung JH, Kwon OS, Eun HC, Youn JI, Song YW, Kim JG, Cho KH (1998) Apoptosis in the pathogenesis of cutaneous lupus erythematosus. Am J Dermatopathol 20:233–241

    PubMed  CAS  Google Scholar 

  76. Pablos JL, Santiago B, Galindo M, Carreira PE, Ballestin C, Gomez-Reino JJ (1999) Keratinocyte apoptosis and p53 expression in cutaneous lupus and dermatomyositis. J Pathol 188:63–68

    PubMed  CAS  Google Scholar 

  77. Smith ML, Fornace AJ Jr (1997) p53-mediated protective responses to UV irradiation. Proc Natl Acad Sci U S A 94:12255–12257

    PubMed  CAS  Google Scholar 

  78. Brysk MM, Selvanayagam P, Arany I, Brysk H, Tyring SK, Rajaraman S (1995) Induction of apoptotic nuclei by interferon-gamma and by predesquamin in cultured keratinocytes. J Interferon Cytokine Res 15:1029–1035

    PubMed  CAS  Google Scholar 

  79. Tron VA, Trotter MJ, Tang L, Krajewska M, Reed JC, Ho VC, Li G (1998) p53-regulated apoptosis is differentiation dependent in ultraviolet B-irradiated mouse keratinocytes. Am J Pathol 153:579–585

    PubMed  CAS  Google Scholar 

  80. Henkart PA (1994) Lymphocyte-mediated cytotoxicity: two pathways and multiple effector molecules. Immunity 1:343–346

    PubMed  CAS  Google Scholar 

  81. Wright SC, Kumar P, Tam AW, Shen N, Varma M, Larrick JW (1992) Apoptosis and DNA fragmentation precede TNF-induced cytolysis in U937 cells. J Cell Biochem 48:344–355

    PubMed  CAS  Google Scholar 

  82. Lowin B, Hahne M, Mattmann C, Tschopp J (1994) Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature 370:650–652

    PubMed  CAS  Google Scholar 

  83. Nakajima M, Nakajima A, Kayagaki N, Honda M, Yagita H, Okumura K (1997) Expression of Fas ligand and its receptor in cutaneous lupus: implication in tissue injury. Clin Immunol Immunopathol 83:223–229

    PubMed  CAS  Google Scholar 

  84. Casciola-Rosen LA, Anhalt GJ, Rosen A (1995) DNA-dependent protein kinase is one of a subset of autoantigens specifically cleaved early during apoptosis. J Exp Med 182:1625–1634

    PubMed  CAS  Google Scholar 

  85. Utz PJ, Hottelet M, Schur PH, Anderson P (1997) Proteins phosphorylated during stress-induced apoptosis are common targets for autoantibody production in patients with systemic lupus erythematosus. J Exp Med 185:843–854

    PubMed  CAS  Google Scholar 

  86. Utz PJ, Anderson P (1998) Posttranslational protein modifications, apoptosis, and the bypass of tolerance to autoantigens. Arthritis Rheum 41:1152–1160

    PubMed  CAS  Google Scholar 

  87. Greidinger EL, Casciola-Rosen L, Morris SM, Hoffman RW, Rosen A (2000) Autoantibody recognition of distinctly modified forms of the U1-70-kd antigen is associated with different clinical disease manifestations. Arthritis Rheum 43:881–888

    PubMed  CAS  Google Scholar 

  88. Casciola-Rosen L, Andrade F, Ulanet D, Wong WB, Rosen A (1999) Cleavage by granzyme B is strongly predictive of autoantigen status: implications for initiation of autoimmunity. J Exp Med 190:815–826

    PubMed  CAS  Google Scholar 

  89. Berthou C, Michel L, Soulie A, Jean-Louis F, Flageul B, Dubertret L, Sigaux F, Zhang Y, Sasportes M (1997) Acquisition of granzyme B and Fas ligand proteins by human keratinocytes contributes to epidermal cell defense. J Immunol 159:5293–5300

    PubMed  CAS  Google Scholar 

  90. Rosen A, Casciola-Rosen L (1999) Autoantigens as substrates for apoptotic proteases: implications for the pathogenesis of systemic autoimmune disease. Cell Death Differ 6:6–12

    PubMed  CAS  Google Scholar 

  91. Savill J, Fadok V, Henson P, Haslett C (1993) Phagocyte recognition of cells undergoing apoptosis. Immunol Today 14:131–136

    PubMed  CAS  Google Scholar 

  92. Roos A, Xu W, Castellano G, Nauta AJ, Garred P, Daha MR, van Kooten C (2004) Mini-review: a pivotal role for innate immunity in the clearance of apoptotic cells. Eur J Immunol 34:921–929

    PubMed  CAS  Google Scholar 

  93. Korb LC, Ahearn JM (1997) C1q binds directly and specifically to surface blebs of apoptotic human keratinocytes: complement deficiency and systemic lupus erythematosus revisited. J Immunol 158:4525–4528

    PubMed  CAS  Google Scholar 

  94. Eggleton P, Ward FJ, Johnson S, Khamashta MA, Hughes GR, Hajela VA, Michalak M, Corbett EF, Staines NA, Reid KB (2000) Fine specificity of autoantibodies to calreticulin: epitope mapping and characterization. Clin Exp Immunol 120:384–391

    PubMed  CAS  Google Scholar 

  95. Nepomuceno RR, Henschen-Edman AH, Burgess WH, Tenner AJ (1997) cDNA cloning and primary structure analysis of C1qR(P), the human C1q/MBL/SPA receptor that mediates enhanced phagocytosis in vitro. Immunity 6:119–129

    PubMed  CAS  Google Scholar 

  96. Bowness P, Davies KA, Norsworthy PJ, Athanassiou P, Taylor-Wiedeman J, Borysiewicz LK, Meyer PA, Walport MJ (1994) Hereditary C1q deficiency and systemic lupus erythematosus. QJM 87:455–464

    PubMed  CAS  Google Scholar 

  97. Botto M, Dell’Agnola C, Bygrave AE, Thompson EM, Cook HT, Petry F, Loos M, Pandolfi PP, Walport MJ (1998) Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat Genet 19:56–59

    PubMed  CAS  Google Scholar 

  98. Pickering MC, Fischer S, Lewis MR, Walport MJ, Botto M, Cook HT (2001) Ultraviolet-radiation-induced keratinocyte apoptosis in C1q-deficient mice. J Invest Dermatol 117:52–58

    PubMed  CAS  Google Scholar 

  99. Herrmann M, Voll RE, Zoller OM, Hagenhofer M, Ponner BB, Kalden JR (1998) Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum 41:1241–1250

    PubMed  CAS  Google Scholar 

  100. Baumann I, Kolowos W, Voll RE, Manger B, Gaipl U, Neuhuber WL, Kirchner T, Kalden JR, Herrmann M (2002) Impaired uptake of apoptotic cells into tingible body macrophages in germinal centers of patients with systemic lupus erythematosus. Arthritis Rheum 46:191–201

    PubMed  Google Scholar 

  101. Okamoto H, Mizuno K, Itoh T, Tanaka K, Horio T (1999) Evaluation of apoptotic cells induced by ultraviolet light B radiation in epidermal sheets stained by the TUNEL technique. J Invest Dermatol 113:802–807

    PubMed  CAS  Google Scholar 

  102. Woodcock A, Magnus IA (1976) The sunburn cell in mouse skin: preliminary quantitative studies on its production. Br J Dermatol 95:459–468

    PubMed  CAS  Google Scholar 

  103. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 101:890–898

    PubMed  CAS  Google Scholar 

  104. Nauta AJ, Castellano G, Xu W, Woltman AM, Borrias MC, Daha MR, van Kooten C, Roos A (2004) Opsonization with C1q and mannose-binding lectin targets apoptotic cells to dendritic cells. J Immunol 173:3044–3050

    PubMed  CAS  Google Scholar 

  105. Albert ML, Sauter B, Bhardwaj N (1998) Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392:86–89

    PubMed  CAS  Google Scholar 

  106. Rovere P, Vallinoto C, Bondanza A, Crosti MC, Rescigno M, Ricciardi-Castagnoli P, Rugarli C, Manfredi AA (1998) Bystander apoptosis triggers dendritic cell maturation and antigen-presenting function. J Immunol 161:4467–4471

    PubMed  CAS  Google Scholar 

  107. Caricchio R, McPhie L, Cohen PL (2003) Ultraviolet B radiation-induced cell death: critical role of ultraviolet dose in inflammation and lupus autoantigen redistribution. J Immunol 171:5778–5786

    PubMed  CAS  Google Scholar 

  108. Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195

    PubMed  CAS  Google Scholar 

  109. Shi Y, Evans JE, Rock KL (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425:516–521

    PubMed  CAS  Google Scholar 

  110. Bell DA, Maddison PJ (1980) Serologic subsets in systemic lupus erythematosus: an examination of autoantibodies in relationship to clinical features of disease and HLA antigens. Arthritis Rheum 23:1268–1273

    PubMed  CAS  Google Scholar 

  111. Scofield RH, Harley JB (1994) Association of anti-Ro/SS-A autoantibodies with glutamine in position 34 of DQA1 and leucine in position 26 of DQB1. Arthritis Rheum 37:961–962

    PubMed  CAS  Google Scholar 

  112. McCauliffe DP, Faircloth E, Wang L, Hashimoto T, Hoshino Y, Nishikawa T (1996) Similar Ro/SS-A autoantibody epitope and titer responses in annular erythema of Sjogren’s syndrome and subacute cutaneous lupus erythematosus. Arch Dermatol 132:528–531

    PubMed  CAS  Google Scholar 

  113. Miyagawa S, Shinohara K, Fujita T, Kidoguchi K, Fukumoto T, Hashimoto K, Yoshioka A, Shirai T (1997) Neonatal lupus erythematosus: analysis of HLA class II alleles in mothers and siblings from seven Japanese families. J Am Acad Dermatol 36:186–190

    PubMed  CAS  Google Scholar 

  114. Rischmueller M, Lester S, Chen Z, Champion G, Van Den BR, Beer R, Coates T, McCluskey J, Gordon T (1998) HLA class II phenotype controls diversification of the autoantibody response in primary Sjogren’s syndrome (pSS). Clin Exp Immunol 111:365–371

    PubMed  CAS  Google Scholar 

  115. Namekawa T, Kuroda K, Kato T, Yamamoto K, Murata H, Sakamaki T, Nishioka K, Iwamoto I, Saitoh Y, Sumida T (1995) Identification of Ro(SSA) 52 kDa reactive T cells in labial salivary glands from patients with Sjogren’s syndrome. J Rheumatol 22:2092–2099

    PubMed  CAS  Google Scholar 

  116. Reynolds P, Gordon TP, Purcell AW, Jackson DC, McCluskey J (1996) Hierarchical self-tolerance to T cell determinants within the ubiquitous nuclear self-antigen La (SS-B) permits induction of systemic autoimmunity in normal mice. J Exp Med 184:1857–1870

    PubMed  CAS  Google Scholar 

  117. Deshmukh US, Lewis JE, Gaskin F, Kannapell CC, Waters ST, Lou YH, Tung KS, Fu SM (1999) Immune responses to Ro60 and its peptides in mice. I. The nature of the immunogen and endogenous autoantigen determine the specificities of the induced autoantibodies. J Exp Med 189:531–540

    PubMed  CAS  Google Scholar 

  118. Sullivan KE, Wooten C, Schmeckpeper BJ, Goldman D, Petri MA (1997) A promoter polymorphism of tumor necrosis factor alpha associated with systemic lupus erythematosus in African-Americans. Arthritis Rheum 40:2207–2211

    PubMed  CAS  Google Scholar 

  119. Rood MJ, van Krugten MV, Zanelli E, van der Linden MW, Keijsers V, Schreuder GM, Verduyn W, Westendorp RG, de Vries RR, Breedveld FC, Verweij CL, Huizinga TW (2000) TNF-308A and HLA-DR3 alleles contribute independently to susceptibility to systemic lupus erythematosus. Arthritis Rheum 43:129–134

    PubMed  CAS  Google Scholar 

  120. Bennion SD, Middleton MH, David-Bajar KM, Brice S, Norris DA (1995) In three types of interface dermatitis, different patterns of expression of intercellular adhesion molecule-1 (ICAM-1) indicate different triggers of disease. J Invest Dermatol 105:71S–79S

    PubMed  CAS  Google Scholar 

  121. Middleton MH, Norris DA (1995) Cytokine-induced ICAM-1 expression in human keratinocytes is highly variable in keratinocyte strains from different donors. J Invest Dermatol 104:489–496

    PubMed  CAS  Google Scholar 

  122. Werth VP, Zhang W, Dortzbach K, Sullivan K (2000) Association of a promoter polymorphism of tumor necrosis factor-alpha with subacute cutaneous lupus erythematosus and distinct photoregulation of transcription. J Invest Dermatol 115:726–730

    PubMed  CAS  Google Scholar 

  123. Millard TP, Kondeatis E, Cox A, Wilson AG, Grabczynska SA, Carey BS, Lewis CM, Khamashta MA, Duff GW, Hughes GR, Hawk JL, Vaughan RW, McGregor JM (2001) A candidate gene analysis of three related photosensitivity disorders: cutaneous lupus erythematosus, polymorphic light eruption and actinic prurigo. Br J Dermatol 145:229–236

    PubMed  CAS  Google Scholar 

  124. Clancy RM, Backer CB, Yin X, Chang MW, Cohen SR, Lee LA, Buyon JP (2004) Genetic association of cutaneous neonatal lupus with HLA class II and tumor necrosis factor alpha: implications for pathogenesis. Arthritis Rheum 50:2598–2603

    PubMed  CAS  Google Scholar 

  125. Hoekzema R, Hannema AJ, Swaak TJ, Paardekooper J, Hack CE (1985) Low molecular weight C1q in systemic lupus erythematosus. J Immunol 135:265–271

    PubMed  CAS  Google Scholar 

  126. Steinsson K, McLean RH, Merrow M, Rothfield NF, Weinstein A (1983) Selective complete Clq deficiency associated with systemic lupus erythematosus. J Rheumatol 10:590–594

    PubMed  CAS  Google Scholar 

  127. Hannema AJ, Kluin-Nelemans JC, Hack CE, Eerenberg-Belmer AJ, Mallee C, van Helden HP (1984) SLE like syndrome and functional deficiency of C1q in members of a large family. Clin Exp Immunol 55:106–114

    PubMed  CAS  Google Scholar 

  128. Rynes RI (1982) Inherited complement deficiency states and SLE. Clin Rheum Dis 8:29–47

    PubMed  CAS  Google Scholar 

  129. Sontheimer RD, Racila E, Racila DM (2005) C1q: its functions within the innate and adaptive immune responses and its role in lupus autoimmunity. J Invest Dermatol 125:14–23

    PubMed  CAS  Google Scholar 

  130. Racila DM, Sontheimer CJ, Sheffield A, Wisnieski JJ, Racila E, Sontheimer RD (2003) Homozygous single nucleotide polymorphism of the complement C1QA gene is associated with decreased levels of C1q in patients with subacute cutaneous lupus erythematosus. Lupus 12:124–132

    PubMed  CAS  Google Scholar 

  131. Miwa T, Maldonado MA, Zhou L, Sun X, Luo HY, Cai D, Werth VP, Madaio MP, Eisenberg RA, Song WC (2002) Deletion of decay-accelerating factor (CD55) exacerbates autoimmune disease development in MRL/lpr mice. Am J Pathol 161:1077–1086

    PubMed  CAS  Google Scholar 

  132. Gilchrest BA, Soter NA, Stoff JS, Mihm MC Jr (1981) The human sunburn reaction: histologic and biochemical studies. J Am Acad Dermatol 5:411–422

    PubMed  CAS  Google Scholar 

  133. Hruza LL, Pentland AP (1993) Mechanisms of UV-induced inflammation. J Invest Dermatol 100:35S–41S

    PubMed  CAS  Google Scholar 

  134. Bennion SD, Norris DA (1997) Ultraviolet light modulation of autoantigens, epidermal cytokines and adhesion molecules as contributing factors of the pathogenesis of cutaneous LE. Lupus 6:181–192

    PubMed  CAS  Google Scholar 

  135. Kupper TS, Chua AO, Flood P, McGuire J, Gubler U (1987) Interleukin 1 gene expression in cultured human keratinocytes is augmented by ultraviolet irradiation. J Clin Invest 80:430–436

    PubMed  CAS  Google Scholar 

  136. Granstein RD, Sauder DN (1987) Whole-body exposure to ultraviolet radiation results in increased serum interleukin-1 activity in humans. Lymphokine Res 6:187–193

    PubMed  CAS  Google Scholar 

  137. Kock A, Schwarz T, Kirnbauer R, Urbanski A, Perry P, Ansel JC, Luger TA (1990) Human keratinocytes are a source for tumor necrosis factor alpha: evidence for synthesis and release upon stimulation with endotoxin or ultraviolet light. J Exp Med 172:1609–1614

    PubMed  CAS  Google Scholar 

  138. Skiba B, Neill B, Piva TJ (2005) Gene expression profiles of TNF-alpha, TACE, furin, IL-1beta and matrilysin in UVA- and UVB-irradiated HaCat cells. Photodermatol Photoimmunol Photomed 21:173–182

    PubMed  CAS  Google Scholar 

  139. de Vos S, Brach M, Budnik A, Grewe M, Herrmann F, Krutmann J (1994) Post-transcriptional regulation of interleukin-6 gene expression in human keratinocytes by ultraviolet B radiation. J Invest Dermatol 103:92–96

    PubMed  CAS  Google Scholar 

  140. Ansel J, Perry P, Brown J, Damm D, Phan T, Hart C, Luger T, Hefeneider S (1990) Cytokine modulation of keratinocyte cytokines. J Invest Dermatol 94:101S–107S

    PubMed  CAS  Google Scholar 

  141. Kupper TS (1989) Mechanisms of cutaneous inflammation. Interactions between epidermal cytokines, adhesion molecules, and leukocytes. Arch Dermatol 125:1406–1412

    PubMed  CAS  Google Scholar 

  142. Luger TA, Schwarz T (1990) Evidence for an epidermal cytokine network. J Invest Dermatol 95:100S–104S

    PubMed  CAS  Google Scholar 

  143. Schroder JM (1995) Cytokine networks in the skin. J Invest Dermatol 105:20S–24S

    PubMed  CAS  Google Scholar 

  144. Wang B, Fujisawa H, Zhuang L, Kondo S, Shivji GM, Kim CS, Mak TW, Sauder DN (1997) Depressed Langerhans cell migration and reduced contact hypersensitivity response in mice lacking TNF receptor p75. J Immunol 159:6148–6155

    PubMed  CAS  Google Scholar 

  145. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    PubMed  CAS  Google Scholar 

  146. Wenzel J, Worenkamper E, Freutel S, Henze S, Haller O, Bieber T, Tuting T (2005) Enhanced type I interferon signalling promotes Th1-biased inflammation in cutaneous lupus erythematosus. J Pathol 205:435–442

    PubMed  CAS  Google Scholar 

  147. Meller S, Winterberg F, Gilliet M, Muller A, Lauceviciute I, Rieker J, Neumann NJ, Kubitza R, Gombert M, Bunemann E, Wiesner U, Franken-Kunkel P, Kanzler H., Dieu-Nosjean MC, Amara A, Ruzicka T, Lehmann P, Zlotnik A, Homey B (2005) Ultraviolet radiation-induced injury, chemokines, and leukocyte recruitment: an amplification cycle triggering cutaneous lupus erythematosus. Arthritis Rheum 52:1504–1516

    PubMed  CAS  Google Scholar 

  148. Grether-Beck S, Olaizola-Horn S, Schmitt H, Grewe M, Jahnke A, Johnson JP, Briviba K, Sies H, Krutmann J (1996) Activation of transcription factor AP-2 mediates UVA radiation- and singlet oxygen-induced expression of the human intercellular adhesion molecule 1 gene. Proc Natl Acad Sci USA 93:14586–14591

    PubMed  CAS  Google Scholar 

  149. Morita A, Grewe M, Grether-Beck S, Olaizola-Horn S, Krutmann J (1997) Induction of proinflammatory cytokines in human epidermoid carcinoma cells by in vitro ultraviolet A1 irradiation. Photochem Photobiol 65:630–635

    PubMed  CAS  Google Scholar 

  150. Morita A, Werfel T, Stege H, Ahrens C, Karmann K, Grewe M, Grether-Beck S, Ruzicka T, Kapp A, Klotz LO, Sies H, Krutmann J (1997), Evidence that singlet oxygen-induced human T helper cell apoptosis is the basic mechanism of ultraviolet—a radiation phototherapy. J Exp Med 186:1763–1768

    PubMed  CAS  Google Scholar 

  151. Heckmann M, Pirthauer M, Plewig G (1997) Adhesion of leukocytes to dermal endothelial cells is induced after single-dose, but reduced after repeated doses of UVA. J Invest Dermatol 109:710–715

    PubMed  CAS  Google Scholar 

  152. Ullrich SE (1996) Does exposure to UV radiation induce a shift to a Th-2-like immune reaction? Photochem Photobiol 64:254–258

    PubMed  CAS  Google Scholar 

  153. Abbas AK, Murphy KM, Sher A (1996) Functional diversity of helper T lymphocytes. Nature 383:787–793

    PubMed  CAS  Google Scholar 

  154. Belmont HM, Buyon J, Giorno R, Abramson S (1994) Up-regulation of endothelial cell adhesion molecules characterizes disease activity in systemic lupus erythematosus. The Shwartzman phenomenon revisited. Arthritis Rheum 37:376–383

    PubMed  CAS  Google Scholar 

  155. McGrath H Jr, Bak E, Michalski JP (1987) Ultraviolet-A light prolongs survival and improves immune function in (New Zealand black × New Zealand white)F1 hybrid mice. Arthritis Rheum 30:557–561

    PubMed  Google Scholar 

  156. McGrath H, Martinez-Osuna P, Lee FA (1996) Ultraviolet-A1 (340–400 nm) irradiation therapy in systemic lupus erythematosus. Lupus 5:269–274

    PubMed  CAS  Google Scholar 

  157. Polderman MC, le Cessie S, Huizinga TW, Pavel S (2004) Efficacy of UVA-1 cold light as an adjuvant therapy for systemic lupus erythematosus. Rheumatology (Oxford) 43:1402–1404

    CAS  Google Scholar 

  158. Szegedi A, Simics E, Aleksza M, Horkay I, Gaal K, Sipka S, Hunyadi J, Kiss E (2005) Ultraviolet-A1 phototherapy modulates Th1/Th2 and Tc1/Tc2 balance in patients with systemic lupus erythematosus. Rheumatology (Oxford) 44:925–931

    CAS  Google Scholar 

  159. Sanders CJ, Lam HY, Bruijnzeel-Koomen CA, Sigurdsson V, van Weelden H (2006) UV hardening therapy: a novel intervention in patients with photosensitive cutaneous lupus erythematosus. J Am Acad Dermatol 54:479–486

    PubMed  Google Scholar 

  160. Weston WL, Harmon C, Peebles C, Manchester D, Franco HL, Huff JC, Norris DA (1982) A serological marker for neonatal lupus erythematosus. Br J Dermatol 107:377–382

    PubMed  CAS  Google Scholar 

  161. Xue D, Shi H, Smith JD, Chen X, Noe DA, Cedervall T, Yang DD, Eynon E, Brash DE, Kashgarian M, Flavell RA, Wolin SL (2003) A lupus-like syndrome develops in mice lacking the Ro 60-kDa protein, a major lupus autoantigen. Proc Natl Acad Sci U S A 100:7503–7508

    PubMed  CAS  Google Scholar 

  162. Clark G, Reichlin M, Tomasi TB Jr (1969) Characterization of a soluble cytoplasmic antigen reactive with sera from patients with systemic lupus erythmatosus. J Immunol 102:117–122

    PubMed  CAS  Google Scholar 

  163. Boulanger C, Chabot B, Menard HA, Boire G (1995) Autoantibodies in human anti-Ro sera specifically recognize deproteinized hY5 Ro RNA. Clin Exp Immunol 99:29–36

    Article  PubMed  CAS  Google Scholar 

  164. Alspaugh MA, Tan EM (1975) Antibodies to cellular antigens in Sjogren’s syndrome. J Clin Invest 55:1067–1073

    PubMed  CAS  Google Scholar 

  165. Sontheimer RD, Lieu TS, McCauliffe DP (1991) Molecular characterization of the Ro/SS-A autoimmune response. Semin Dermatol 10:199–205

    PubMed  CAS  Google Scholar 

  166. Farris AD, Puvion-Dutilleul F, Puvion E, Harley JB, Lee LA (1997) The ultrastructural localization of 60-kDa Ro protein and human cytoplasmic RNAs: association with novel electron-dense bodies. Proc Natl Acad Sci U S A 94:3040–3045

    PubMed  CAS  Google Scholar 

  167. O’Brien CA, Wolin SL (1994) A possible role for the 60-kD Ro autoantigen in a discard pathway for defective 5S rRNA precursors. Genes Dev 8:2891–2903

    PubMed  CAS  Google Scholar 

  168. Ben Chetrit E, Chan EK, Sullivan KF, Tan EM (1988) A 52-kD protein is a novel component of the SS-A/Ro antigenic particle. J Exp Med 167:1560–1571

    PubMed  CAS  Google Scholar 

  169. Gerl V, Hostmann B, Johnen C, Waka A, Gerl M, Schumann F, Klein R, Radbruch A, Hiepe F (2005) The intracellular 52-kd Ro/SSA autoantigen in keratinocytes is up-regulated by tumor necrosis factor alpha via tumor necrosis factor receptor I. Arthritis Rheum 52:531–538

    PubMed  CAS  Google Scholar 

  170. DiDonato F, Chan E, Askenase A (1999) Interaction between 52kD SSA/Ro and deubiquinating enzyme UNP; a clue to function (abstract). Arthritis Rheum 42:S109

    Google Scholar 

  171. Slobbe RL, Pluk W, Van Venrooij WJ, Pruijn GJ (1992) Ro ribonucleoprotein assembly in vitro. Identification of RNA-protein and protein–protein interactions. J Mol Biol 227:361–366

    PubMed  CAS  Google Scholar 

  172. Scofield RH, Kurien BT, Zhang F, Mehta P, Kaufman K, Gross T, Bachmann M, Gordon T, Harley JB (1999) Protein–protein interaction of the Ro-ribonucleoprotein particle using multiple antigenic peptides. Mol Immunol 36:1093–1106

    PubMed  CAS  Google Scholar 

  173. Cheng ST, Nguyen TQ, Yang YS, Capra JD, Sontheimer RD (1996) Calreticulin binds hYRNA and the 52-kDa polypeptide component of the Ro/SS-A ribonucleoprotein autoantigen. J Immunol 156:4484–4491

    PubMed  CAS  Google Scholar 

  174. Eggleton P, Reid KB, Kishore U, Sontheimer RD (1997) Clinical relevance of calreticulin in systemic lupus erythematosus. Lupus 6:564–571

    PubMed  CAS  Google Scholar 

  175. Eggleton P, Llewellyn DH (1999) Pathophysiological roles of calreticulin in autoimmune disease. Scand J Immunol 49:466–473

    PubMed  CAS  Google Scholar 

  176. Nair S, Wearsch PA, Mitchell DA, Wassenberg JJ, Gilboa E, Nicchitta CV (1999) Calreticulin displays in vivo peptide-binding activity and can elicit CTL responses against bound peptides. J Immunol 162:6426–6432

    PubMed  CAS  Google Scholar 

  177. Gottlieb E, Steitz JA (1989) Function of the mammalian La protein: evidence for its action in transcription termination by RNA polymerase III. EMBO J 8:851–861

    PubMed  CAS  Google Scholar 

  178. Holcik M, Korneluk RG (2000) Functional characterization of the X-linked inhibitor of apoptosis (XIAP) internal ribosome entry site element: role of La autoantigen in XIAP translation. Mol Cell Biol 20:4648–4657

    PubMed  CAS  Google Scholar 

  179. Hendrick JP, Wolin SL, Rinke J, Lerner MR, Steitz JA (1981) Ro small cytoplasmic ribonucleoproteins are a subclass of La ribonucleoproteins: further characterization of the Ro and La small ribonucleoproteins from uninfected mammalian cells. Mol Cell Biol 1:1138–1149

    PubMed  CAS  Google Scholar 

  180. Nguyen TO, Capra JD, Sontheimer RD (1996) Calreticulin is transcriptionally upregulated by heat shock, calcium and heavy metals. Mol Immunol 33:379–386

    PubMed  CAS  Google Scholar 

  181. Kinoshita G, Purcell AW, Keech CL, Farris AD, McCluskey J, Gordon TP (1999) Molecular chaperones are targets of autoimmunity in Ro(SS-A) immune mice. Clin Exp Immunol 115:268–274

    PubMed  CAS  Google Scholar 

  182. Furukawa F, Ikai K, Matsuyoshi N, Shimizu K, Imamura S (1993) Relationship between heat shock protein induction and the binding of antibodies to the extractable nuclear antigens on cultured human keratinocytes. J Invest Dermatol 101:191–195

    PubMed  CAS  Google Scholar 

  183. Igarashi T, Itoh Y, Fukunaga Y, Yamamoto M (1995) Stress-induced cell surface expression and antigenic alteration of the Ro/SSA autoantigen. Autoimmunity 22:33–42

    PubMed  CAS  Google Scholar 

  184. Ellis J (1996) Stress proteins as molecular chaperones. Nature 328:378–379

    Google Scholar 

  185. Srivastava PK, Menoret A, Basu S, Binder RJ, McQuade KL (1998) Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity 8:657–665

    PubMed  CAS  Google Scholar 

  186. Birk OS, Gur SL, Elias D, Margalit R, Mor F, Carmi P, Bockova J, Altmann DM, Cohen IR (1999) The 60-kDa heat shock protein modulates allograft rejection. Proc Natl Acad Sci U S A 96:5159–5163

    PubMed  CAS  Google Scholar 

  187. Ghoreishi M, Katayama I, Yokozeki H, Nishioka K (1993) Analysis of 70 KD heat shock protein (HSP70) expression in the lesional skin of lupus erythematosus (LE) and LE related diseases. J Dermatol 20:400–405

    PubMed  CAS  Google Scholar 

  188. Mamula MJ (1998) Epitope spreading: the role of self peptides and autoantigen processing by B lymphocytes. Immunol Rev 164:231–239

    PubMed  CAS  Google Scholar 

  189. McCluskey J, Farris AD, Keech CL, Purcell AW, Rischmueller M, Kinoshita G, Reynolds P, Gordon TP (1998) Determinant spreading: lessons from animal models and human disease. Immunol Rev 164:209–229

    PubMed  CAS  Google Scholar 

  190. Kinoshita G, Keech CL, Sontheimer RD, Purcell A, McCluskey J, Gordon TP (1998) Spreading of the immune response from 52 kDaRo and 60 kDaRo to calreticulin in experimental autoimmunity. Lupus 7:7–11

    PubMed  CAS  Google Scholar 

  191. Lieu TS, Sontheimer RD (1997) A subpopulation of WIL-2 cell calreticulin molecules is associated with RO/SS-A ribonucleoprotein particles. Lupus 6:40–47

    Article  PubMed  CAS  Google Scholar 

  192. Scofield RH, Racila DM, Gordon TP, Kurien BT, Sontheimer RD (2000) Anti-calreticulin segregates anti-Ro sera in systemic lupus erythematosus: anti-calreticulin is present in sera with anti-Ro alone but not in anti-Ro sera with anti-La or anti-ribonucleoprotein. J Rheumatol 27:128–134

    PubMed  CAS  Google Scholar 

  193. Lee LA, Gaither KK, Coulter SN, Norris DA, Harley JB (1989) Pattern of cutaneous immunoglobulin G deposition in subacute cutaneous lupus erythematosus is reproduced by infusing purified anti-Ro (SSA) autoantibodies into human skin-grafted mice. J Clin Invest 83:1556–1562

    Article  PubMed  CAS  Google Scholar 

  194. Furukawa F, Kashihara-Sawami M, Lyons MB, Norris DA (1990) Binding of antibodies to the extractable nuclear antigens SS-A/Ro and SS-B/La is induced on the surface of human keratinocytes by ultraviolet light (UVL): implications for the pathogenesis of photosensitive cutaneous lupus. J Invest Dermatol 94:77–85

    PubMed  CAS  Google Scholar 

  195. Furukawa F, Lyons MB, Lee LA, Coulter SN, Norris DA (1988) Estradiol enhances binding to cultured human keratinocytes of antibodies specific for SS-A/Ro and SS-B/La. Another possible mechanism for estradiol influence of lupus erythematosus. J Immunol 141:1480–1488

    PubMed  CAS  Google Scholar 

  196. Rosen A, Casciola-Rosen L, Ahearn J (1995) Novel packages of viral and self-antigens are generated during apoptosis. J Exp Med 181:1557–1561

    PubMed  CAS  Google Scholar 

  197. Frisoni L, McPhie L, Colonna L, Sriram U, Monestier M, Gallucci S, Caricchio R (2005) Nuclear autoantigen translocation and autoantibody opsonization lead to increased dendritic cell phagocytosis and presentation of nuclear antigens: a novel pathogenic pathway for autoimmunity? J Immunol 175:2692–2701

    PubMed  CAS  Google Scholar 

  198. Bennion SD, Ferris C, Lieu TS, Reimer CB, Lee LA (1990) IgG subclasses in the serum and skin in subacute cutaneous lupus erythematosus and neonatal lupus erythematosus. J Invest Dermatol 95:643–646

    PubMed  CAS  Google Scholar 

  199. Biesecker G, Lavin L, Ziskind M, Koffler D (1982) Cutaneous localization of the membrane attack complex in discoid and systemic lupus erythematosus. N Engl J Med 306:264–270

    Article  PubMed  CAS  Google Scholar 

  200. Helm KF, Peters MS (1993) Deposition of membrane attack complex in cutaneous lesions of lupus erythematosus. J Am Acad Dermatol 28:687–691

    PubMed  CAS  Google Scholar 

  201. Magro CM, Crowson AN, Harrist TJ (1996) The use of antibody to C5b-9 in the subclassification of lupus erythematosus. Br J Dermatol 134:855–862

    PubMed  CAS  Google Scholar 

  202. Furukawa F, Kanauchi H, Imamura S (1994) Susceptibility to UVB light in cultured keratinocytes of cutaneous lupus erythematosus. Dermatology 189(Suppl 1):18–23

    PubMed  Google Scholar 

  203. Furukawa F, Itoh T, Wakita H, Yagi H, Tokura Y, Norris DA, Takigawa M (1999) Keratinocytes from patients with lupus erythematosus show enhanced cytotoxicity to ultraviolet radiation and to antibody-mediated cytotoxicity. Clin Exp Immunol 118:164–170

    PubMed  CAS  Google Scholar 

  204. Niimi Y, Ioannides D, Buyon J, Bystryn JC (1995) Heterogeneity in the expression of Ro and La antigens in human skin. Arthritis Rheum 38:1271–1276

    PubMed  CAS  Google Scholar 

  205. Ioannides D, Golden BD, Buyon JP, Bystryn JC (2000) Expression of SS-A/Ro and SS-B/La antigens in skin biopsy specimens of patients with photosensitive forms of lupus erythematosus. Arch Dermatol 136:340–346

    PubMed  CAS  Google Scholar 

  206. Burlingame RW, Rubin RL, Balderas RS, Theofilopoulos AN (1993) Genesis and evolution of antichromatin autoantibodies in murine lupus implicates T-dependent immunization with self antigen. J Clin Invest 91:1687–1696

    PubMed  CAS  Google Scholar 

  207. Furukawa F (1997) Animal models of cutaneous lupus erythematosus and lupus erythematosus photosensitivity. Lupus 6:193–202

    PubMed  CAS  Google Scholar 

  208. Kinoshita K, Tesch G, Schwarting A, Maron R, Sharpe AH, Kelley VR (2000) Costimulation by B7-1 and B7-2 is required for autoimmune disease in MRL-Faslpr mice. J Immunol 164:6046–6056

    PubMed  CAS  Google Scholar 

  209. Mehling A, Loser K, Varga G, Metze D, Luger TA, Schwarz T, Grabbe S, Beissert S (2001) Overexpression of CD40 ligand in murine epidermis results in chronic skin inflammation and systemic autoimmunity. J Exp Med 194:615–628

    PubMed  CAS  Google Scholar 

  210. Hooks JJ, Moutsopoulos HM, Geis SA, Stahl NI, Decker JL, Notkins AL (1979) Immune interferon in the circulation of patients with autoimmune disease. N Engl J Med 301:5–8

    Article  PubMed  CAS  Google Scholar 

  211. Ytterberg SR, Schnitzer TJ (1982) Serum interferon levels in patients with systemic lupus erythematosus. Arthritis Rheum 25:401–406

    PubMed  CAS  Google Scholar 

  212. Friedman RM, Preble O, Black R, Harrell S (1982) Interferon production in patients with systemic lupus erythematosus. Arthritis Rheum 25:802–803

    PubMed  CAS  Google Scholar 

  213. Preble OT, Black RJ, Friedman RM, Klippel JH, Vilcek J (1982) Systemic lupus erythematosus: presence in human serum of an unusual acid-labile leukocyte interferon. Science 216:429–431

    PubMed  CAS  Google Scholar 

  214. Kim T, Kanayama Y, Negoro N, Okamura M, Takeda T, Inoue T (1987) Serum levels of interferons in patients with systemic lupus erythematosus. Clin Exp Immunol 70:562–569

    PubMed  CAS  Google Scholar 

  215. von Wussow P, Jakschies D, Hartung K, Deicher H (1988) Presence of interferon and anti-interferon in patients with systemic lupus erythematosus. Rheumatol Int 8:225–230

    Google Scholar 

  216. Savarese E, Chae OW, Trowitzsch S, Weber G, Kastner B, Akira S, Wagner H, Schmid RM, Bauer S, Krug A (2006) U1 small nuclear ribonucleoprotein immune complexes induce type I interferon in plasmacytoid dendritic cells through TLR7. Blood 107:3229–3234

    PubMed  CAS  Google Scholar 

  217. Barrat FJ, Meeker T, Gregorio J, Chan JH, Uematsu S, Akira S, Chang B, Duramad O, Coffman RL (2005) Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J Exp Med 202:1131–1139

    PubMed  CAS  Google Scholar 

  218. Kind P, Lehmann P, Plewig G (1993) Phototesting in lupus erythematosus. J Invest Dermatol 100:53S–57S

    PubMed  CAS  Google Scholar 

  219. Sontheimer R, Bergstresser PR (1982) Epidermal Langerhans cell involvement in cutaneous lupus erythematosus. J Invest Dermatol 79:237–243

    PubMed  CAS  Google Scholar 

  220. Andrews BS, Schenk A, Barr R, Friou G, Mirick G, Ross P (1986) Immunopathology of cutaneous human lupus erythematosus defined by murine monoclonal antibodies. J Am Acad Dermatol 15:474–481

    Article  PubMed  CAS  Google Scholar 

  221. Shiohara T, Moriya N, Tanaka Y, Arai Y, Hayakawa J, Chiba M, Nagashima M (1988) Immunopathologic study of lichenoid skin diseases: correlation between HLA-DR-positive keratinocytes or Langerhans cells and epidermotropic T cells. J Am Acad Dermatol 18:67–74

    PubMed  CAS  Google Scholar 

  222. Volc-Platzer B, Anegg B, Milota S, Pickl W, Fischer G (1993) Accumulation of gamma delta T cells in chronic cutaneous lupus erythematosus. J Invest Dermatol 100:84S–91S

    PubMed  CAS  Google Scholar 

  223. Fivenson DP, Rheins LA, Nordlund JJ, Pomaranski M, Douglass MC, Krull EA (1991) Thy-1 and T-cell receptor antigen expression in mycosis fungoides and benign inflammatory dermatoses. J Natl Cancer Inst 83:1088–1092

    PubMed  CAS  Google Scholar 

  224. Robak E, Niewiadomska H, Robak T, Bartkowiak J, Blonski JZ, Wozniacka A, Pomorski L, Sysa-Jedrezejowska A (2001) Lymphocyctes Tgammadelta in clinically normal skin and peripheral blood of patients with systemic lupus erythematosus and their correlation with disease activity. Mediators Inflamm 10:179–189

    PubMed  CAS  Google Scholar 

  225. Rifkin IR, Leadbetter EA, Busconi L, Viglianti G, Marshak-Rothstein A (2005) Toll-like receptors, endogenous ligands, and systemic autoimmune disease. Immunol Rev 204:27–42

    PubMed  CAS  Google Scholar 

  226. Vollmer J, Tluk S, Schmitz C, Hamm S, Jurk M, Forsbach A, Akira S, Kelly KM, Reeves WH, Bauer S, Krieg AM (2005) Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8. J Exp Med 202:1575–1585

    PubMed  CAS  Google Scholar 

  227. Cruz PD Jr, Leverkus M, Dougherty I, Gleason MJ, Eller M, Yaar M, Gilchrest, BA (2000) Thymidine dinucleotides inhibit contact hypersensitivity and activate the gene for tumor necrosis factor alpha1. J Invest Dermatol 114:253–258

    PubMed  CAS  Google Scholar 

  228. Yu P, Wellmann U, Kunder S, Quintanilla-Martinez L, Jennen L, Dear N, Amann K, Bauer S, Winkler TH, Wagner H (2006) Toll-like receptor 9-independent aggravation of glomerulonephritis in a novel model of SLE. Int Immunol 18:1211–1219

    PubMed  CAS  Google Scholar 

  229. Wu X, Peng SL (2006) Toll-like receptor 9 signaling protects against murine lupus. Arthritis Rheum 54:336–342

    PubMed  CAS  Google Scholar 

  230. Kelly KM, Zhuang H, Nacionales DC, Scumpia PO, Lyons R, Akaogi J, Lee P, Williams B, Yamamoto M, Akira S, Satoh M, Reeves WH (2006) “Endogenous adjuvant” activity of the RNA components of lupus autoantigens Sm/RNP and Ro 60. Arthritis Rheum 54:1557–1567

    PubMed  CAS  Google Scholar 

  231. Norris DA (1993) Pathomechanisms of photosensitive lupus erythematosus. J Invest Dermatol 100:58S–68S

    PubMed  CAS  Google Scholar 

  232. Lee LA, Farris AD (1999) Photosensitivity diseases: cutaneous lupus erythematosus. J Investig Dermatol Symp Proc 4:73–78

    PubMed  CAS  Google Scholar 

  233. Orteu CH, Sontheimer RD, Dutz JP (2001) The pathophysiology of photosensitivity in lupus erythematosus. Photodermatol Photoimmunol Photomed 17:95–113

    PubMed  CAS  Google Scholar 

  234. Werth VP, Dutz JP, Sontheimer RD (1997) Pathogenetic mechanisms and treatment of cutaneous lupus erythematosus. Curr Opin Rheumatol 9:400–409

    PubMed  CAS  Google Scholar 

  235. Sontheimer RD (1996) Photoimmunology of lupus erythematosus and dermatomyositis: a speculative review. Photochem Photobiol 63:583–594

    PubMed  CAS  Google Scholar 

  236. Werth VP, Bashir M, Zhang W (2004) Photosensitivity in rheumatic diseases. J Investig Dermatol Symp Proc 9:57–63

    PubMed  CAS  Google Scholar 

  237. Sontheimer RD (1997) The lexicon of cutaneous lupus erythematosus—a review and personal perspective on the nomenclature and classification of the cutaneous manifestations of lupus erythematosus. Lupus 6:84–95

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria P. Werth.

Additional information

Some sections in this review have been modified with the publisher’s permission from Dubois’ Lupus Erythematosus, chapter 28: Pathomechanisms of Cutaneous Lupus Erythematosus, 7th ed. Daniel J. Wallace, Bevra H Hahn, eds. Lippincott Williams & Wilkins, Philadelphia, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, J.H., Dutz, J.P., Sontheimer, R.D. et al. Pathophysiology of Cutaneous Lupus Erythematosus. Clinic Rev Allerg Immunol 33, 85–106 (2007). https://doi.org/10.1007/s12016-007-0031-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-007-0031-x

Keywords

Navigation