Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genome-wide association meta-analysis in Chinese and European individuals identifies ten new loci associated with systemic lupus erythematosus

Abstract

Systemic lupus erythematosus (SLE; OMIM 152700) is a genetically complex autoimmune disease. Genome-wide association studies (GWASs) have identified more than 50 loci as robustly associated with the disease in single ancestries, but genome-wide transancestral studies have not been conducted. We combined three GWAS data sets from Chinese (1,659 cases and 3,398 controls) and European (4,036 cases and 6,959 controls) populations. A meta-analysis of these studies showed that over half of the published SLE genetic associations are present in both populations. A replication study in Chinese (3,043 cases and 5,074 controls) and European (2,643 cases and 9,032 controls) subjects found ten previously unreported SLE loci. Our study provides further evidence that the majority of genetic risk polymorphisms for SLE are contained within the same regions across both populations. Furthermore, a comparison of risk allele frequencies and genetic risk scores suggested that the increased prevalence of SLE in non-Europeans (including Asians) has a genetic basis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of Manhattan plots for the European and Chinese SLE GWASs.
Figure 2: Fine-mapping examples for STAT4, IRF7 and ELF1.
Figure 3: 3D enrichment plots depicting epigenetic modifications of ±50 bp overlapping all SNPs in the credibility sets for the 11 newly identified associated SNPs.
Figure 4: Box plots of GRS across the five major population groups.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Lawrence, J.S., Martins, C.L. & Drake, G.L. A family survey of lupus-erythematosus. 1. Heritability. J. Rheumatol. 14, 913–921 (1987).

    CAS  PubMed  Google Scholar 

  2. Danchenko, N., Satia, J. & Anthony, M. Epidemiology of systemic lupus erythematosus: a comparison of worldwide disease burden. Lupus 15, 308–318 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Bentham, J. et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat. Genet. 47, 1457–1464 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Han, J.W. et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat. Genet. 41, 1234–1237 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Yang, W. et al. Genome-wide association study in Asian populations identifies variants in ETS1 and WDFY4 associated with systemic lupus erythematosus. PLoS Genet. 6, e1000841 (2010).

    PubMed  PubMed Central  Google Scholar 

  6. Sheng, Y.J. et al. Follow-up study identifies two novel susceptibility loci PRKCB and 8p11.21 for systemic lupus erythematosus. Rheumatology 50, 682–688 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Yang, W. et al. Meta-analysis followed by replication identifies loci in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as associated with systemic lupus erythematosus in Asians. Am. J. Hum. Genet. 92, 41–51 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, Y. et al. Association analyses identifying two common susceptibility loci shared by psoriasis and systemic lupus erythematosus in the Chinese Han population. J. Med. Genet. 50, 812–818 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Sheng, Y.J. et al. Association analyses confirm five susceptibility loci for systemic lupus erythematosus in the Han Chinese population. Arthritis Res. Ther. 17, 85 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yang, J. et al. ELF1 is associated with systemic lupus erythematosus in Asian populations. Hum. Mol. Genet. 20, 601–607 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Fernando, M.M.A. et al. Transancestral mapping of the MHC region in systemic lupus erythematosus identifies new independent and interacting loci at MSH5, HLA-DPB1 and HLA-G. Ann. Rheum. Dis. 71, 777–784 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Manku, H. et al. Trans-ancestral studies fine map the SLE-susceptibility locus TNFSF4. PLoS Genet. 9, e1003554 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Adrianto, I. et al. Association of a functional variant downstream of TNFAIP3 with systemic lupus erythematosus. Nat. Genet. 43, 253–258 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mahajan, A. et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat. Genet. 46, 234–244 (2014).

    CAS  PubMed  Google Scholar 

  15. Hom, G. et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N. Engl. J. Med. 358, 900–909 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Raj, T. et al. Polarization of the effects of autoimmune and neurodegenerative risk alleles in leukocytes. Science 344, 519–523 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fairfax, B.P. et al. Genetics of gene expression in primary immune cells identifies cell type-specific master regulators and roles of HLA alleles. Nat. Genet. 44, 502–510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nica, A.C. et al. Candidate causal regulatory effects by integration of expression QTLs with complex trait genetic associations. PLoS Genet. 6, e1000895 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jury, E.C., Kabouridis, P.S., Flores-Borja, F., Mageed, R.A. & Isenberg, D.A. Altered lipid raft-associated signaling and ganglioside expression in T lymphocytes from patients with systemic lupus erythematosus. J. Clin. Invest. 113, 1176–1187 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, C. et al. Contribution of IKBKE and IFIH1 gene variants to SLE susceptibility. Genes Immun. 14, 217–222 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Kim, K. et al. High-density genotyping of immune loci in Koreans and Europeans identifies eight new rheumatoid arthritis risk loci. Ann. Rheum. Dis. 74, e13 (2015).

    Article  PubMed  Google Scholar 

  22. Plagnol, V. et al. Genome-wide association analysis of autoantibody positivity in type 1 diabetes cases. PLoS Genet. 7, e1002216 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Medici, M. et al. Identification of novel genetic loci associated with thyroid peroxidase antibodies and clinical thyroid disease. PLoS Genet. 10, e1004123 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tantin, D., Tussie-Luna, M.I., Roy, A.L. & Sharp, P.A. Regulation of immunoglobulin promoter activity by TFII-I class transcription factors. J. Biol. Chem. 279, 5460–5469 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Lu, L.D. et al. Depletion of autoreactive plasma cells and treatment of lupus nephritis in mice using CEP-33779, a novel, orally active, selective inhibitor of JAK2. J. Immunol. 187, 3840–3853 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Crow, Y.J. et al. Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. Am. J. Med. Genet. A. 167, 296–312 (2015).

    Article  CAS  Google Scholar 

  27. Günther, C. et al. Defective removal of ribonucleotides from DNA promotes systemic autoimmunity. J. Clin. Invest. 125, 413–424 (2015).

    Article  PubMed  Google Scholar 

  28. Huang, C. et al. Cutting Edge: a novel, human-specific interacting protein couples FOXP3 to a chromatin-remodeling complex that contains KAP1/TRIM28. J. Immunol. 190, 4470–4473 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Pruim, R.J. et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26, 2336–2337 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Beecham, A.H. et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat. Genet. 45, 1353–1360 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Maller, J.B. et al. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat. Genet. 44, 1294–1301 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gaulton, K.J. et al. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat. Genet. 47, 1415–1425 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bernstein, B.E. et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. 28, 1045–1048 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. O'Connell, J. et al. A general approach for haplotype phasing across the full spectrum of relatedness. PLoS Genet. 10, e1004234 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. Nat. Rev. Genet. 11, 499–511 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. R-Core-Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2013).

  38. Willer, C.J., Li, Y. & Abecasis, G.R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, M.X., Kwan, J.S.H. & Sham, P.C. HYST: A hybrid set-based test for genome-wide association studies, with application to protein-protein interaction-based association analysis. Am. J. Hum. Genet. 91, 478–488 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, M.X., Gui, H.S., Kwan, J.S.H. & Sham, P.C. GATES: a rapid and powerful gene-based association test using extended Simes procedure. Am. J. Hum. Genet. 88, 283–293 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, M.X., Sham, P.C., Cherny, S.S. & Song, Y.Q.A. Knowledge-based weighting framework to boost the power of genome-wide association studies. PLoS One 5, e14480 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Goecks, J., Nekrutenko, A., Taylor, J. & Galaxy, T. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 11, R86 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hughes, T. et al. Analysis of autosomal genes reveals gene-sex interactions and higher total genetic risk in men with systemic lupus erythematosus. Ann. Rheum. Dis. 71, 694–699 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Yang, J., Lee, S.H., Goddard, M.E. & Visscher, P.M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

P.T. is employed by the Biomedical Research Centre. L.C. was funded by the China Scholarship Council (201406380127). The research was funded/supported by the National Institute for Health Research (NIHR) Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust and King's College London. T.J.V. was awarded funding to carry out genotyping and analysis from G. Koukis, an Arthritis Research UK Special Strategic Award, and the Wellcome Trust (grant 085492). T.J.V. was awarded funding by the MRC (L002604/1, “Functional genomics of SLE: a transancestral approach”). Y.C., X. Zhang, S.Y. and Y.S. acknowledge support from the Key Basic Research Program of China (2014CB541901, 2012CB722404 and 2011CB512103), the National Natural Science Foundation of China (81402590, 81371722, 81320108016 and 81171505), the Research Project of the Chinese Ministry of Education (213018A), the Program for New Century Excellent Talents in University (NCET-12-0600) and the Natural Science Fund of Anhui Province (1408085MKL27). W.Y. and Y.L.L. acknowledge support from the Research Grant Council of the Hong Kong Government (GRF HKU783813M, HKU 784611M, 17125114 and HKU 770411M). Y.Z. thanks the Health and Medical Research Fund (12133701) from the Food and Health Bureau, Hong Kong. We thank T. Raj and P. De Jager for contributing gene expression data (CD4+ T cells and CD14/16+ monocytes in Asian and European populations; available in the NCBI Gene Expression Omnibus under accession number GSE56035). We thank B. Fairfax and J. Knight for contributing gene expression data on NK cells, naive monocytes, LPS-stimulated monocytes (harvested after 2 h and 24 h), interferon and B cells. We thank S. Daffern for downloading the ChIP-seq data in contribution to the epigenetic analysis.

For the replication study in Europeans, samples were provided by the Swedish SLE Network (led by L.R.). Replication genotyping was performed by the SNP&SEQ Technology Platform in Uppsala, which is part of the Swedish National Genomics Infrastructure (NGI) hosted by Science for Life Laboratory. The controls for the European GWASs and replication were obtained from dbGaP accession phs000428.v1.p1 (a study sponsored by the National Institute on Aging (grants U01AG009740, RC2AG036495 and RC4AG039029) and conducted by the University of Michigan); melanoma study data under dbGaP accession phs000187.v1.p1; a blood clotting study (dbGaP accession phs000304.v1.p1); and prostate cancer study data under dbGaP accession phs000207.v1.

The French cases for the European replication study were provided by the PLUS study, funded by a grant from the French PHRC 2005 Ministère de la Santé (ClinicalTrials.gov: NCT00413361 to N.C-C.). Participants were F. Ackermann, Z. Amoura, B. Asli, L. Astudillo, O. Aumaître, C. Belizna, N. Belmatoug, O. Benveniste, A. Benyamine, H. Bezanahary, P. Blanco, O. Bletry, P. Bourgeois, B. Brihaye, P. Cacoub, E. Chatelus, J. Cohen-Bittan, R. Damade, E. Daugas, C. De-Gennes, J.-F. Delfraissy, A. Delluc, H. Desmurs-Clavel, P. Duhaut, A. Dupuy, I. Durieu, H.-K. Ea, O. Fain, D. Farge, C. Funck-Brentano, C. Frances, L. Galicier, F. Gandjbakhch, J. Gellen-Dautremer, B. Godeau, C. Goujard, C. Grandpeix, C. Grange, G. Guettrot, L. Guillevin, E. Hachulla, J.-R. Harle, J. Haroche, P. Hausfater, J.-S. Hulot, M. Jallouli, J. Jouquan, G. Kaplanski, H. Keshtmand, M. Khellaf, O. Lambotte, D. Launay, P. Lechat, D.L.T. Huong, V. Le-Guern, J.-E. Kahn, G. Leroux, H. Levesque, O. Lidove, N. Limal, F. Lioté, E. Liozon, L.Y. Kim, M. Mahevas, K. Mariampillai, X. Mariette, A. Mathian, K. Mazodier, M. Michel, N. Morel, L. Mouthon, J. Ninet, E. Oksenhendler, T. Papo, J.-L. Pellegrin, L. Perard, O. Peyr, A.-M. Piette, J.-C. Piette, V. Poindron, J. Pourrat, F. Roux, D. Saadoun, K. Sacre, S. Sahali, L. Sailler, B. Saint-Marcoux, F. Sarrot-Reynauld, Y. Schoindre, J. Sellam, D. Sène, J. Serratrice, P. Seve, J. Sibilia, C. Simon, A. Smail, C. Sordet, J. Stirnemann, S. Trad, J.-F. Viallard, E. Vidal, B. Wechsler, P.-J. Weiller, and N. Zahr.

Y.L.L. is thankful for generous donations from Shun Tak District Min Yuen Tong of Hong Kong that partially supported the SLE GWAS in Hong Kong. Y.L.L. and W.Y. thank the doctors who contributed SLE cases and colleagues in the LKS Faculty of Medicine, University of Hong Kong, who provided controls used in the GWASs.

Author information

Authors and Affiliations

Authors

Contributions

Y.-F.W., Z.Z. and P.T. contributed equally to this work. T.J.V., X. Zhang, Y.C., Y.L.L. and W.Y. supervised the study. Z.Z., L.W., C.Y., L.L., L.Y., F.L., Y.H., X.Y. and S.Y. performed sample selection and data management, undertook recruitment and collected phenotype data for the Anhui Chinese data. L.R., B.G.F., R.E.V., G.S., N.C.-C. and P.M.G. performed sample selection and data management, undertook recruitment and collected phenotype data for the European data. A.L.R. and Y.S. worked on genotyping of both Chinese and European replication studies. D.L.M., Y.S., Y.Z. and Y.-F.W. carried out statistical analysis of the GWAS data. D.L.M. and P.T. carried out the 1000 Genomes Project imputation in the European GWAS. Y.S., X. Zuo, R.C. and T.W. carried out the 1000 Genomes Project imputation in the Anhui and Hong Kong Chinese GWASs. D.L.M., P.T., Y.S., X. Zuo, Y.-F.W. and Y.Z. carried out statistical analysis for the meta-analysis of the 1000 Genomes Project imputed data. D.L.M., Y.S. and Y.Z. designed the replication studies' chips. B.G.F. and R.E.V. contributed data to the European replication cohort. D.L.M. and J.B. performed quality control on the European data for the replication study. D.L.M. analyzed European replication data. D.L.M., Y.S. and Y.Z. analyzed Anhui replication data. Y.-F.W. and D.L.M. designed and performed genetic risk score comparison between the populations. Y.-F.W. performed the LD score regression analysis. D.L.M. and L.C. carried out the eQTL analysis. D.L.M. and D.S.C.G. carried out the epigenetic analysis. D.L.M., T.J.V., D.S.C.G., X. Zhang, Y.C., Y.S. and W.Y. wrote the manuscript. All authors read and contributed to the manuscript.

Corresponding authors

Correspondence to Wanling Yang, Yong Cui or Timothy J Vyse.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Tables 1–5, and Supplementary Notes 1–3 (PDF 8289 kb)

Supplementary Table 6

SNPs contained with the credibility sets for the newly discovered loci that also had peaks of chromatin marks (XLSX 38 kb)

Supplementary Table 7

The imputation quality information (XLSX 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morris, D., Sheng, Y., Zhang, Y. et al. Genome-wide association meta-analysis in Chinese and European individuals identifies ten new loci associated with systemic lupus erythematosus. Nat Genet 48, 940–946 (2016). https://doi.org/10.1038/ng.3603

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3603

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing