Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells

Abstract

The inducible costimulatory molecule ICOS has been suggested to be important in the development of interleukin 17 (IL-17)-producing helper T cells (TH-17 cells) and of follicular helper T cells (TFH cells). Here we show that ICOS-deficient mice had no defect in TH-17 differentiation but had fewer TH-17 cells after IL-23 stimulation and fewer TFH cells. We also show that TFH cells produced IL-17 and that TFH cells in ICOS-deficient mice were defective in IL-17 production. Both TH-17 and TFH cells had higher expression of the transcription factor c-Maf. Genetic loss of c-Maf resulted in a defect in IL-21 production and fewer TH-17 and TFH cells. Thus our data suggest that ICOS-induced c-Maf regulates IL-21 production that in turn regulates the expansion of TH-17 and TFH cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ICOS is not crucial for TH-17 differentiation in vitro.
Figure 2: ICOS is not crucial for TH-17 differentiation in vivo or for the induction of acute EAE.
Figure 3: TFH cells produce IL-17.
Figure 4: ICOS-deficient TFH cells are defective in IL-17 production.
Figure 5: ICOS-deficient T cells have a defect in secondary TH-17 responses.
Figure 6: The function of c-Maf in TH-17 differentiation.

Similar content being viewed by others

Accession codes

Accessions

ArrayExpress

References

  1. Lock, C. et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat. Med. 8, 500–508 (2002).

    Article  CAS  Google Scholar 

  2. Matusevicius, D. et al. Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult. Scler. 5, 101–104 (1999).

    Article  CAS  Google Scholar 

  3. Aarvak, T., Chabaud, M., Miossec, P. & Natvig, J.B. IL-17 is produced by some proinflammatory Th1/Th0 cells but not by Th2 cells. J. Immunol. 162, 1246–1251 (1999).

    CAS  PubMed  Google Scholar 

  4. Teunissen, M.B., Koomen, C.W., de Waal Malefyt, R., Wierenga, E.A. & Bos, J.D. Interleukin-17 and interferon-γ synergize in the enhancement of proinflammatory cytokine production by human keratinocytes. J. Invest. Dermatol. 111, 645–649 (1998).

    Article  CAS  Google Scholar 

  5. Langrish, C.L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005).

    Article  CAS  Google Scholar 

  6. Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    Article  CAS  Google Scholar 

  7. Mangan, P.R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature 441, 231–234 (2006).

    Article  CAS  Google Scholar 

  8. Cua, D.J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    Article  CAS  Google Scholar 

  9. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    Article  CAS  Google Scholar 

  10. Aggarwal, S., Ghilardi, N., Xie, M.H., de Sauvage, F.J. & Gurney, A.L. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 278, 1910–1914 (2003).

    Article  CAS  Google Scholar 

  11. Korn, T. et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature 448, 484–487 (2007).

    Article  CAS  Google Scholar 

  12. Zhou, L. et al. IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 8, 967–974 (2007).

    Article  CAS  Google Scholar 

  13. Chtanova, T. et al. T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J. Immunol. 173, 68–78 (2004).

    Article  CAS  Google Scholar 

  14. Rasheed, A.U., Rahn, H.P., Sallusto, F., Lipp, M. & Muller, G. Follicular B helper T cell activity is confined to CXCR5hiICOShi CD4 T cells and is independent of CD57 expression. Eur. J. Immunol. 36, 1892–1903 (2006).

    Article  CAS  Google Scholar 

  15. MacLennan, I.C. Germinal centers. Annu. Rev. Immunol. 12, 117–139 (1994).

    Article  CAS  Google Scholar 

  16. Liu, Y.J. et al. Within germinal centers, isotype switching of immunoglobulin genes occurs after the onset of somatic mutation. Immunity 4, 241–250 (1996).

    Article  CAS  Google Scholar 

  17. Schaerli, P. et al. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med. 192, 1553–1562 (2000).

    Article  CAS  Google Scholar 

  18. Kim, C.H. et al. Subspecialization of CXCR5+ T cells: B helper activity is focused in a germinal center-localized subset of CXCR5+ T cells. J. Exp. Med. 193, 1373–1381 (2001).

    Article  CAS  Google Scholar 

  19. Hutloff, A. et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397, 263–266 (1999).

    Article  CAS  Google Scholar 

  20. Dong, C. et al. ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409, 97–101 (2001).

    Article  CAS  Google Scholar 

  21. Mak, T.W. et al. Costimulation through the inducible costimulator ligand is essential for both T helper and B cell functions in T cell-dependent B cell responses. Nat. Immunol. 4, 765–772 (2003).

    Article  CAS  Google Scholar 

  22. Grimbacher, B. et al. Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nat. Immunol. 4, 261–268 (2003).

    Article  CAS  Google Scholar 

  23. Warnatz, K. et al. Human ICOS deficiency abrogates the germinal center reaction and provides a monogenic model for common variable immunodeficiency. Blood 107, 3045–3052 (2006).

    Article  CAS  Google Scholar 

  24. Akiba, H. et al. The role of ICOS in the CXCR5+ follicular B helper T cell maintenance in vivo. J. Immunol. 175, 2340–2348 (2005).

    Article  CAS  Google Scholar 

  25. Bossaller, L. et al. ICOS deficiency is associated with a severe reduction of CXCR5+CD4 germinal center Th cells. J. Immunol. 177, 4927–4932 (2006).

    Article  CAS  Google Scholar 

  26. Bonhagen, K. et al. ICOS+ Th cells produce distinct cytokines in different mucosal immune responses. Eur. J. Immunol. 33, 392–401 (2003).

    Article  CAS  Google Scholar 

  27. Sperling, A.I. & Bluestone, J.A. ICOS costimulation: it's not just for TH2 cells anymore. Nat. Immunol. 2, 573–574 (2001).

    Article  CAS  Google Scholar 

  28. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  Google Scholar 

  29. Komiyama, Y. et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J. Immunol. 177, 566–573 (2006).

    Article  CAS  Google Scholar 

  30. Ivanov, I.I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  Google Scholar 

  31. Bryant, V.L. et al. Cytokine-mediated regulation of human B cell differentiation into Ig-secreting cells: predominant role of IL-21 produced by CXCR5+ T follicular helper cells. J. Immunol. 179, 8180–8190 (2007).

    Article  CAS  Google Scholar 

  32. Ansel, K.M., McHeyzer-Williams, L.J., Ngo, V.N., McHeyzer-Williams, M.G. & Cyster, J.G. In vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. J. Exp. Med. 190, 1123–1134 (1999).

    Article  CAS  Google Scholar 

  33. Coyle, A.J. et al. The CD28-related molecule ICOS is required for effective T cell-dependent immune responses. Immunity 13, 95–105 (2000).

    Article  CAS  Google Scholar 

  34. Ozkaynak, E. et al. Importance of ICOS-B7RP-1 costimulation in acute and chronic allograft rejection. Nat. Immunol. 2, 591–596 (2001).

    Article  CAS  Google Scholar 

  35. Nurieva, R.I. et al. Transcriptional regulation of th2 differentiation by inducible costimulator. Immunity 18, 801–811 (2003).

    Article  CAS  Google Scholar 

  36. Usui, Y. et al. The role of the ICOS/B7RP-1 T cell costimulatory pathway in murine experimental autoimmune uveoretinitis. Eur. J. Immunol. 36, 3071–3081 (2006).

    Article  CAS  Google Scholar 

  37. Lohning, M. et al. Expression of ICOS in vivo defines CD4+ effector T cells with high inflammatory potential and a strong bias for secretion of interleukin 10. J. Exp. Med. 197, 181–193 (2003).

    Article  CAS  Google Scholar 

  38. Ito, T. et al. Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. J. Exp. Med. 204, 105–115 (2007).

    Article  CAS  Google Scholar 

  39. Groux, H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737–742 (1997).

    Article  CAS  Google Scholar 

  40. O'Garra, A. & Vieira, P. TH1 cells control themselves by producing interleukin-10. Nat. Rev. Immunol. 7, 425–428 (2007).

    Article  CAS  Google Scholar 

  41. Sonderegger, I. et al. Neutralization of IL-17 by active vaccination inhibits IL-23-dependent autoimmune myocarditis. Eur. J. Immunol. 36, 2849–2856 (2006).

    Article  CAS  Google Scholar 

  42. Hsu, H.C. et al. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat. Immunol. 9, 166–175 (2008).

    Article  CAS  Google Scholar 

  43. Dong, C., Temann, U.A. & Flavell, R.A. Cutting edge: critical role of inducible costimulator in germinal center reactions. J. Immunol. 166, 3659–3662 (2001).

    Article  CAS  Google Scholar 

  44. Wong, S.C., Oh, E., Ng, C.H. & Lam, K.P. Impaired germinal center formation and recall T-cell-dependent immune responses in mice lacking the costimulatory ligand B7–H2. Blood 102, 1381–1388 (2003).

    Article  CAS  Google Scholar 

  45. Vinuesa, C.G. et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435, 452–458 (2005).

    Article  CAS  Google Scholar 

  46. Yu, D. et al. Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA. Nature 450, 299–303 (2007).

    Article  CAS  Google Scholar 

  47. Nakae, S., Nambu, A., Sudo, K. & Iwakura, Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J. Immunol. 171, 6173–6177 (2003).

    Article  CAS  Google Scholar 

  48. Greenwald, R.J., McAdam, A.J., Van der Woude, D., Satoskar, A.R. & Sharpe, A.H. Cutting edge: inducible costimulator protein regulates both Th1 and Th2 responses to cutaneous leishmaniasis. J. Immunol. 168, 991–995 (2002).

    Article  CAS  Google Scholar 

  49. McAdam, A.J. et al. ICOS is critical for CD40-mediated antibody class switching. Nature 409, 102–105 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Kozoriz for cell sorting, and A. Jaeger, S. Liu and L. Francisco for comments. A.H.S. and V.K.K. are joint senior authors. Supported by the National Institutes of Health (1R01NS045937-01, 2R01NS35685-06, 2R37NS30843-11, 1R01A144880-03, P01NS38037-04 and 1R01NS046414 to V.K.K.; 2P01A139671-07 and 1P01AI56299 to V.K.K. and A.H.S.; R37 AI38310 to A.H.S.; Javits Neuroscience Investigator Award to V.K.K.), the National Multiple Sclerosis Society (RG-2571-D-9), the European Commission (A.T.B.) and the Deutsche Forschungsgemeinschaft (M.M.).

Author information

Authors and Affiliations

Authors

Contributions

A.T.B. and A.M.P. designed experiments, did experiments, collected data and contributed to the writing of the manuscript. H.J. undertook expression profiling of TH-17 cells and analyzed c-Maf expression in different cell types. M.M. provided help in performing experiments. A.H.S. and V.K.K. supervised the project and edited the manuscript. I.-C.H. provided c-Maf–deficient mice.

Corresponding author

Correspondence to Vijay K Kuchroo.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 and Supplementary Methods (PDF 127 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauquet, A., Jin, H., Paterson, A. et al. The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nat Immunol 10, 167–175 (2009). https://doi.org/10.1038/ni.1690

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1690

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing