Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Osteopontin expression is essential for interferon-α production by plasmacytoid dendritic cells

Abstract

The observation that the T-bet transcription factor allows tissue-specific upregulation of intracellular osteopontin (Opn-i) in plasmacytoid dendritic cells (pDCs) suggests that Opn might contribute to the expression of interferon-α (IFN-α) in those cells. Here we show that Opn deficiency substantially reduced Toll-like receptor 9 (TLR9)–dependent IFN-α responses but spared expression of transcription factor NF-κB–dependent proinflammatory cytokines. Shortly after TLR9 engagement, colocalization of Opn-i and the adaptor molecule MyD88 was associated with induction of transcription factor IRF7–dependent IFN-α gene expression, whereas deficient expression of Opn-i was associated with defective nuclear translocation of IRF7 in pDCs. The importance of the Opn–IFN-α pathway was emphasized by its essential involvement in cross-presentation in vitro and in anti–herpes simplex virus 1 IFN-α response in vivo. The finding that Opn-i selectively coupled TLR9 signaling to expression of IFN-α but not to that of other proinflammatory cytokines provides new molecular insight into the biology of pDCs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Opn expression in pDCs and cDCs 24 h after stimulation.
Figure 2: Cytokine production by pDCs.
Figure 3: Intracellular Opn is required for IFN-α production.
Figure 4: Biochemical analysis of Opn-i.
Figure 5: Localization of Opn together with MyD88 and TLR9.
Figure 6: In vitro OVA cross-presentation by pDCs.
Figure 7: IFN-α-dependent cross-presentation.
Figure 8: Opn-dependent in vivo response to HSV-1 infection.

Similar content being viewed by others

References

  1. Iwasaki, A. & Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 5, 987–995 (2004).

    Article  CAS  Google Scholar 

  2. Liu, Y.J. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu. Rev. Immunol. 23, 275–306 (2005).

    Article  CAS  Google Scholar 

  3. Krug, A. et al. TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21, 107–119 (2004).

    Article  CAS  Google Scholar 

  4. Colonna, M., Trinchieri, G. & Liu, Y.J. Plasmacytoid dendritic cells in immunity. Nat. Immunol. 5, 1219–1226 (2004).

    Article  CAS  Google Scholar 

  5. Banchereau, J., Pascual, V. & Palucka, A.K. Autoimmunity through cytokine-induced dendritic cell activation. Immunity 20, 539–550 (2004).

    Article  CAS  Google Scholar 

  6. Theofilopoulos, A.N., Baccala, R., Beutler, B. & Kono, D.H. Type I interferons (α/β) in immunity and autoimmunity. Annu. Rev. Immunol. 23, 307–336 (2005).

    Article  CAS  Google Scholar 

  7. Le Bon, A. et al. Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon. Nat. Immunol. 4, 1009–1015 (2003).

    Article  CAS  Google Scholar 

  8. Boonstra, A. et al. Flexibility of mouse classical and plasmacytoid-derived dendritic cells in directing T helper type 1 and 2 cell development: dependency on antigen dose and differential toll-like receptor ligation. J. Exp. Med. 197, 101–109 (2003).

    Article  CAS  Google Scholar 

  9. Salio, M., Palmowski, M.J., Atzberger, A., Hermans, I.F. & Cerundolo, V. CpG-matured murine plasmacytoid dendritic cells are capable of in vivo priming of functional CD8 T cell responses to endogenous but not exogenous antigens. J. Exp. Med. 199, 567–579 (2004).

    Article  CAS  Google Scholar 

  10. Honda, K., Yanai, H., Takaoka, A. & Taniguchi, T. Regulation of the type I IFN induction: a current view. Int. Immunol. 17, 1367–1378 (2005).

    Article  CAS  Google Scholar 

  11. Kawai, T. & Akira, S. Pathogen recognition with Toll-like receptors. Curr. Opin. Immunol. 17, 338–344 (2005).

    Article  CAS  Google Scholar 

  12. Honda, K. et al. Spatiotemporal regulation of MyD88–IRF7 signalling for robust type-I interferon induction. Nature 434, 1035–1040 (2005).

    Article  CAS  Google Scholar 

  13. Ashkar, S. et al. Eta-1 (osteopontin): an early component of Type 1 (cell-mediated) immunity. Science 287, 860–864 (2000).

    Article  CAS  Google Scholar 

  14. Shinohara, M.L. et al. T-bet-dependent expression of osteopontin contributes to T cell polarization. Proc. Natl. Acad. Sci. USA 102, 17101–17106 (2005).

    Article  CAS  Google Scholar 

  15. Miyazaki, T. et al. Implication of allelic polymorphism of osteopontin in the development of lupus nephritis in MRL/lpr mice. Eur. J. Immunol. 35, 1510–1520 (2005).

    Article  CAS  Google Scholar 

  16. Nau, G.J. et al. Attenuated host resistance against Mycobacterium bovis BCG infection in mice lacking osteopontin. Infect. Immun. 67, 4223–4230 (1999).

    CAS  Google Scholar 

  17. Sibalic, V., Fan, X., Loffing, J. & Wuthrich, R.P. Upregulated renal tubular CD44, hyaluronan, and osteopontin in kdkd mice with interstitial nephritis. Nephrol. Dial. Transplant. 12, 1344–1353 (1997).

    Article  CAS  Google Scholar 

  18. Yu, X.Q. et al. A functional role for osteopontin in experimental crescentic glomerulonephritis in the rat. Proc. Assoc. Am. Phys. 110, 50–64 (1998).

    CAS  Google Scholar 

  19. Hudkins, K.L. et al. Osteopontin expression in human crescentic glomerulonephritis. Kidney Int. 57, 105–116 (2000).

    Article  CAS  Google Scholar 

  20. Steinman, L., Martin, R., Bernard, C., Conlon, P. & Oksenberg, J.R. Multiple sclerosis: deeper understanding of its pathogenesis reveals new targets for therapy. Annu. Rev. Neurosci. 25, 491–505 (2002).

    Article  CAS  Google Scholar 

  21. Xu, G. et al. Role of osteopontin in amplification and perpetuation of rheumatoid synovitis. J. Clin. Invest. 115, 1060–1067 (2005).

    Article  CAS  Google Scholar 

  22. Comabella, M. et al. Plasma osteopontin levels in multiple sclerosis. J. Neuroimmunol. 158, 231–239 (2005).

    Article  CAS  Google Scholar 

  23. Gravallese, E.M. Osteopontin: a bridge between bone and the immune system. J. Clin. Invest. 112, 147–149 (2003).

    Article  CAS  Google Scholar 

  24. Zohar, R. et al. Intracellular osteopontin is an integral component of the CD44-ERM complex involved in cell migration. J. Cell. Physiol. 184, 118–130 (2000).

    Article  CAS  Google Scholar 

  25. Suzuki, K. et al. Colocalization of intracellular osteopontin with CD44 is associated with migration, cell fusion, and resorption in osteoclasts. J. Bone Miner. Res. 17, 1486–1497 (2002).

    Article  CAS  Google Scholar 

  26. Zhu, B. et al. Osteopontin modulates CD44-dependent chemotaxis of peritoneal macrophages through G-protein-coupled receptors: evidence of a role for an intracellular form of osteopontin. J. Cell. Physiol. 198, 155–167 (2004).

    Article  CAS  Google Scholar 

  27. Wilson, H.L. & O'Neill, H.C. Identification of differentially expressed genes representing dendritic cell precursors and their progeny. Blood 102, 1661–1669 (2003).

    Article  CAS  Google Scholar 

  28. Renkl, A.C. et al. Osteopontin functionally activates dendritic cells and induces their differentiation toward a Th1-polarizing phenotype. Blood 106, 946–955 (2005).

    Article  CAS  Google Scholar 

  29. Cantor, H. T-cell receptor crossreactivity and autoimmune disease. Adv. Immunol. 75, 209–233 (2000).

    Article  CAS  Google Scholar 

  30. Denhardt, D.T., Noda, M., O'Regan, A.W., Pavlin, D. & Berman, J.S. Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J. Clin. Invest. 107, 1055–1061 (2001).

    Article  CAS  Google Scholar 

  31. Diao, H. et al. Osteopontin as a mediator of NKT cell function in T cell-mediated liver diseases. Immunity 21, 539–550 (2004).

    Article  CAS  Google Scholar 

  32. Weiss, J.M. et al. Osteopontin is involved in the initiation of cutaneous contact hypersensitivity by inducing Langerhans and dendritic cell migration to lymph nodes. J. Exp. Med. 194, 1219–1230 (2001).

    Article  CAS  Google Scholar 

  33. Szabo, S.J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655–669 (2000).

    Article  CAS  Google Scholar 

  34. Lugo-Villarino, G., Ito, S., Klinman, D.M. & Glimcher, L.H. The adjuvant activity of CpG DNA requires T-bet expression in dendritic cells. Proc. Natl. Acad. Sci. USA 102, 13248–13253 (2005).

    Article  CAS  Google Scholar 

  35. Lugo-Villarino, G., Maldonado-Lopez, R., Possemato, R., Penaranda, C. & Glimcher, L.H. T-bet is required for optimal production of IFN-γ and antigen-specific T cell activation by dendritic cells. Proc. Natl. Acad. Sci. USA 100, 7749–7754 (2003).

    Article  CAS  Google Scholar 

  36. Hemmi, H., Kaisho, T., Takeda, K. & Akira, S. The roles of Toll-like receptor 9, MyD88, and DNA-dependent protein kinase catalytic subunit in the effects of two distinct CpG DNAs on dendritic cell subsets. J. Immunol. 170, 3059–3064 (2003).

    Article  CAS  Google Scholar 

  37. Lee, S.W. et al. Effects of a hexameric deoxyriboguanosine run conjugation into CpG oligodeoxynucleotides on their immunostimulatory potentials. J. Immunol. 165, 3631–3639 (2000).

    Article  CAS  Google Scholar 

  38. Durand, V., Wong, S.Y., Tough, D.F. & Le Bon, A. Shaping of adaptive immune responses to soluble proteins by TLR agonists: a role for IFN-α/β. Immunol. Cell Biol. 82, 596–602 (2004).

    Article  CAS  Google Scholar 

  39. Haeryfar, S.M. The importance of being a pDC in antiviral immunity: the IFN mission versus Ag presentation? Trends Immunol. 26, 311–317 (2005).

    Article  CAS  Google Scholar 

  40. Zuniga, E.I., McGavern, D.B., Pruneda-Paz, J.L., Teng, C. & Oldstone, M.B. Bone marrow plasmacytoid dendritic cells can differentiate into myeloid dendritic cells upon virus infection. Nat. Immunol. 5, 1227–1234 (2004).

    Article  CAS  Google Scholar 

  41. Baccala, R., Kono, D.H. & Theofilopoulos, A.N. Interferons as pathogenic effectors in autoimmunity. Immunol. Rev. 204, 9–26 (2005).

    Article  CAS  Google Scholar 

  42. Ballas, Z.K. et al. Divergent therapeutic and immunologic effects of oligodeoxynucleotides with distinct CpG motifs. J. Immunol. 167, 4878–4886 (2001).

    Article  CAS  Google Scholar 

  43. Bonifacino, J.S. & Traub, L.M. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu. Rev. Biochem. 72, 395–447 (2003).

    Article  CAS  Google Scholar 

  44. Honda, K. et al. Role of a transductional-transcriptional processor complex involving MyD88 and IRF7 in Toll-like receptor signaling. Proc. Natl. Acad. Sci. USA 101, 15416–15421 (2004).

    Article  CAS  Google Scholar 

  45. Takaoka, A. et al. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 434, 243–249 (2005).

    Article  CAS  Google Scholar 

  46. Cho, H.J. et al. IFN-αβ promote priming of antigen-specific CD8+ and CD4+ T lymphocytes by immunostimulatory DNA-based vaccines. J. Immunol. 168, 4907–4913 (2002).

    Article  CAS  Google Scholar 

  47. Datta, S.K. et al. A subset of Toll-like receptor ligands induces cross-presentation by bone marrow-derived dendritic cells. J. Immunol. 170, 4102–4110 (2003).

    Article  CAS  Google Scholar 

  48. Heit, A. et al. Cutting edge: Toll-like receptor 9 expression is not required for CpG DNA-aided cross-presentation of DNA-conjugated antigens but essential for cross-priming of CD8 T cells. J. Immunol. 170, 2802–2805 (2003).

    Article  CAS  Google Scholar 

  49. Barchet, W. et al. Dendritic cells respond to influenza virus through TLR7- and PKR-independent pathways. Eur. J. Immunol. 35, 236–242 (2005).

    Article  CAS  Google Scholar 

  50. Abel, B., Freigang, S., Bachmann, M.F., Boschert, U. & Kopf, M. Osteopontin is not required for the development of Th1 responses and viral immunity. J. Immunol. 175, 6006–6013 (2005).

    Article  CAS  Google Scholar 

  51. Hron, J.D. & Peng, S.L. Type I IFN protects against murine lupus. J. Immunol. 173, 2134–2142 (2004).

    Article  CAS  Google Scholar 

  52. Li, J. et al. Deficiency of type I interferon contributes to Sle2-associated component lupus phenotypes. Arthritis Rheum. 52, 3063–3072 (2005).

    Article  CAS  Google Scholar 

  53. Baechler, E.C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl. Acad. Sci. USA 100, 2610–2615 (2003).

    Article  CAS  Google Scholar 

  54. Kono, D.H., Baccala, R. & Theofilopoulos, A.N. Inhibition of lupus by genetic alteration of the interferon-α/β receptor. Autoimmunity 36, 503–510 (2003).

    Article  CAS  Google Scholar 

  55. Rittling, S.R. et al. Mice lacking osteopontin show normal development and bone structure but display altered osteoclast formation in vitro. J. Bone Miner. Res. 13, 1101–1111 (1998).

    Article  CAS  Google Scholar 

  56. Nakano, H., Yanagita, M. & Gunn, M.D. CD11c+B220+Gr-1+ cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells. J. Exp. Med. 194, 1171–1178 (2001).

    Article  CAS  Google Scholar 

  57. McCarty, N. et al. Signaling by the kinase MINK is essential in the negative selection of autoreactive thymocytes. Nat. Immunol. 6, 65–72 (2005).

    Article  CAS  Google Scholar 

  58. Gilliet, M. & Liu, Y.J. Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J. Exp. Med. 195, 695–704 (2002).

    Article  CAS  Google Scholar 

  59. Hu, D. et al. Analysis of regulatory CD8 T cells in Qa-1-deficient mice. Nat. Immunol. 5, 516–523 (2004).

    Article  CAS  Google Scholar 

  60. Andrews, N.C. & Faller, D.V. A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res. 19, 2499 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Turley for critical reading; D. Laznik for technical assistance; and A. Angel for assistance with the manuscript and figures. Supported by the National Institutes of Health (AI48125 and AI12184 to H.C.; T32 CA70083 to M.L.S; and CA48126 and AI56296 to L.H.G.), the Ellison Medical Foundation (L.H.G.) and the Juvenile Diabetes Research Foundation (M.L.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harvey Cantor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Activation marker expression on pDC from Opn WT and Opn-deficient mice. (PDF 82 kb)

Supplementary Fig. 2

In vitro cross-presentation by pDC and cDC. (PDF 50 kb)

Supplementary Fig. 3

IFNAR signaling licenses pDC for antigen cross-presentation. (PDF 51 kb)

Supplementary Fig. 4

Evaluation of Opn-s and Opn-i in antigen cross-presentation. (PDF 54 kb)

Supplementary Methods (PDF 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shinohara, M., Lu, L., Bu, J. et al. Osteopontin expression is essential for interferon-α production by plasmacytoid dendritic cells. Nat Immunol 7, 498–506 (2006). https://doi.org/10.1038/ni1327

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1327

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing