Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TNF activates an IRF1-dependent autocrine loop leading to sustained expression of chemokines and STAT1-dependent type I interferon–response genes

Abstract

Rapid induction of inflammatory genes by tumor necrosis factor (TNF) has been well studied, but little is known about delayed and chronic TNF responses. Here we investigated the kinetics of primary macrophage responses to TNF and discovered that TNF initiates an interferon-β-mediated autocrine loop that sustains expression of inflammatory genes and induces delayed expression of interferon-response genes such as those encoding the transcription factors STAT1 and IRF7, which enhance macrophage responses to stimulation of cytokines and Toll-like receptors. TNF-induced interferon-β production depended on interferon-response factor 1, and downstream gene expression was mediated by synergy between small amounts of interferon-β and canonical TNF-induced signals. Thus, TNF activates a 'feed-forward' loop that sustains inflammation but avoids the potential toxicity associated with the high interferon production induced by stimulation of Toll-like receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TNF induces late and sustained expression of STAT1 and interferon-response genes in monocytes and macrophages.
Figure 2: TNF signaling is required for gene induction.
Figure 3: Kinetics of TNF-induced gene expression.
Figure 4: Expression of TNF late-response genes is dependent on autocrine IFN-β production.
Figure 5: Synergistic activation of intermediate-response genes by TNF and IFN-β.
Figure 6: Function of TNF in priming and IFN-β production in response to adenoviral transduction and in vivo.
Figure 7: Partial function of IRF3 in TNF-induced expression of late-response genes.
Figure 8: TNF-induced IFN-β production and downstream gene expression mediated by IRF1.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Moldawer, L. in Fundamental Immunology (ed. Paul, W.) 749–773 (Lippincott Williams & Wilkins, Philadelphia, 2003).

    Google Scholar 

  2. Brenner, D.A., O'Hara, M., Angel, P., Chojkier, M. & Karin, M. Prolonged activation of jun and collagenase genes by tumour necrosis factor-alpha. Nature 337, 661–663 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18, 621–663 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Akira, S. & Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Medzhitov, R. & Janeway, C.A., Jr. Decoding the patterns of self and nonself by the innate immune system. Science 296, 298–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Baccala, R., Hoebe, K., Kono, D.H., Beutler, B. & Theofilopoulos, A.N. TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity. Nat. Med. 13, 543–551 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. O'Neill, L.A. & Bowie, A.G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol. 7, 353–364 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Honda, K., Takaoka, A. & Taniguchi, T. Type I interferon gene induction by the interferon regulatory factor family of transcription factors. Immunity 25, 349–360 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Doyle, S. et al. IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity 17, 251–263 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Sharma, S. et al. Triggering the interferon antiviral response through an IKK-related pathway. Science 300, 1148–1151 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Fitzgerald, K.A. et al. IKKε and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4, 491–496 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Sakaguchi, S. et al. Essential role of IRF-3 in lipopolysaccharide-induced interferon-β gene expression and endotoxin shock. Biochem. Biophys. Res. Commun. 306, 860–866 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Banchereau, J. & Pascual, V. Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity 25, 383–392 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Karaghiosoff, M. et al. Central role for type I interferons and Tyk2 in lipopolysaccharide-induced endotoxin shock. Nat. Immunol. 4, 471–477 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Marie, I., Durbin, J.E. & Levy, D.E. Differential viral induction of distinct interferon-α genes by positive feedback through interferon regulatory factor-7. EMBO J. 17, 6660–6669 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Honda, K. et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434, 772–777 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Negishi, H. et al. Evidence for licensing of IFN-γ-induced IFN regulatory factor 1 transcription factor by MyD88 in Toll-like receptor-dependent gene induction program. Proc. Natl. Acad. Sci. USA 103, 15136–15141 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schmitz, F. et al. Interferon-regulatory-factor 1 controls Toll-like receptor 9-mediated IFN-β production in myeloid dendritic cells. Eur. J. Immunol. 37, 315–327 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Miyamoto, M. et al. Regulated expression of a gene encoding a nuclear factor, IRF-1, that specifically binds to IFN-β gene regulatory elements. Cell 54, 903–913 (1988).

    Article  CAS  PubMed  Google Scholar 

  20. Taniguchi, T., Ogasawara, K., Takaoka, A. & Tanaka, N. IRF family of transcription factors as regulators of host defense. Annu. Rev. Immunol. 19, 623–655 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Reis, L.F., Ruffner, H., Stark, G., Aguet, M. & Weissmann, C. Mice devoid of interferon regulatory factor 1 (IRF-1) show normal expression of type I interferon genes. EMBO J. 13, 4798–4806 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lohoff, M. & Mak, T.W. Roles of interferon-regulatory factors in T-helper-cell differentiation. Nat. Rev. Immunol. 5, 125–135 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Liu, J., Guan, X., Tamura, T., Ozato, K. & Ma, X. Synergistic activation of interleukin-12 p35 gene transcription by interferon regulatory factor-1 and interferon consensus sequence-binding protein. J. Biol. Chem. 279, 55609–55617 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Tada, Y., Ho, A., Matsuyama, T. & Mak, T.W. Reduced incidence and severity of antigen-induced autoimmune diseases in mice lacking interferon regulatory factor-1. J. Exp. Med. 185, 231–238 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol. 3, 23–35 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. McInnes, I.B. & Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 7, 429–442 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Covert, M.W., Leung, T.H., Gaston, J.E. & Baltimore, D. Achieving stability of lipopolysaccharide-induced NF-κB activation. Science 309, 1854–1857 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Ramirez-Carrozzi, V.R. et al. Selective and antagonistic functions of SWI/SNF and Mi-2β nucleosome remodeling complexes during an inflammatory response. Genes Dev. 20, 282–296 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Werner, S.L., Barken, D. & Hoffmann, A. Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science 309, 1857–1861 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Hu, X. et al. Sensitization of IFN-γ Jak-STAT signaling during macrophage activation. Nat. Immunol. 3, 859–866 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Genin, P., Algarte, M., Roof, P., Lin, R. & Hiscott, J. Regulation of RANTES chemokine gene expression requires cooperativity between NF-κB and IFN-regulatory factor transcription factors. J. Immunol. 164, 5352–5361 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Ohmori, Y., Schreiber, R.D. & Hamilton, T.A. Synergy between interferon-γ and tumor necrosis factor-α in transcriptional activation is mediated by cooperation between signal transducer and activator of transcription 1 and nuclear factor κB. J. Biol. Chem. 272, 14899–14907 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Kanda, N., Shimizu, T., Tada, Y. & Watanabe, S. IL-18 enhances IFN-γ-induced production of CXCL9, CXCL10, and CXCL11 in human keratinocytes. Eur. J. Immunol. 37, 338–350 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Elkon, K.B. et al. Tumor necrosis factor α plays a central role in immune-mediated clearance of adenoviral vectors. Proc. Natl. Acad. Sci. USA 94, 9814–9819 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Agalioti, T. et al. Ordered recruitment of chromatin modifying and general transcription factors to the IFN-β promoter. Cell 103, 667–678 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Hemmi, H. et al. The roles of two IκB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. J. Exp. Med. 199, 1641–1650 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sweeney, S.E., Hammaker, D., Boyle, D.L. & Firestein, G.S. Regulation of c-Jun phosphorylation by the IκB kinase-ε complex in fibroblast-like synoviocytes. J. Immunol. 174, 6424–6430 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. TenOever, B.R. et al. Multiple functions of the IKK-related kinase IKKε in interferon-mediated antiviral immunity. Science 315, 1274–1278 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Fujita, T. et al. Induction of the transcription factor IRF-1 and interferon-β mRNAs by cytokines and activators of second-messenger pathways. Proc. Natl. Acad. Sci. USA 86, 9936–9940 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Imanishi, D. et al. Identification of a novel cytokine response element in the human IFN regulatory factor-1 gene promoter. J. Immunol. 165, 3907–3916 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Tassiulas, I. et al. Amplification of IFN-α-induced STAT1 activation and inflammatory function by Syk and ITAM-containing adaptors. Nat. Immunol. 5, 1181–1189 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Toshchakov, V. et al. TLR4, but not TLR2, mediates IFN-β-induced STAT1α/β-dependent gene expression in macrophages. Nat. Immunol. 3, 392–398 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Watanabe, N., Sakakibara, J., Hovanessian, A.G., Taniguchi, T. & Fujita, T. Activation of IFN-β element by IRF-1 requires a posttranslational event in addition to IRF-1 synthesis. Nucleic Acids Res. 19, 4421–4428 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Taniguchi, T. & Takaoka, A. A weak signal for strong responses: interferon-α/β revisited. Nat. Rev. Mol. Cell Biol. 2, 378–386 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Levy, D.E. Whence interferon? Variety in the production of interferon in response to viral infection. J. Exp. Med. 195, 15–18 (2002).

    Article  Google Scholar 

  46. Dhodapkar, K.M. et al. Selective blockade of the inhibitory Fcγ receptor (FcγRIIB) in human dendritic cells and monocytes induces a type I interferon response program. J. Exp. Med. 204, 1359–1369 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Antoniv, T.T. & Ivashkiv, L.B. Dysregulation of interleukin-10-dependent gene expression in rheumatoid arthritis synovial macrophages. Arthritis Rheum. 54, 2711–2721 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. van Holten, J., Smeets, T.J., Blankert, P. & Tak, P.P. Expression of interferon β in synovial tissue from patients with rheumatoid arthritis: comparison with patients with osteoarthritis and reactive arthritis. Ann. Rheum. Dis. 64, 1780–1782 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sweeney, S.E., Mo, L. & Firestein, G.S. Antiviral gene expression in rheumatoid arthritis: role of IKKε and interferon regulatory factor 3. Arthritis Rheum. 56, 743–752 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Sengupta, T.K., Chen, A., Zhong, Z., Darnell, J.E., Jr & Ivashkiv, L.B. Activation of monocyte effector genes and STAT family transcription factors by inflammatory synovial fluid is independent of interferon γ. J. Exp. Med. 181, 1015–1025 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Levy (New York University School of Medicine) for providing IFNAR-deficient mice; E. Falck-Pedersen (Weill Medical College of Cornell University) for providing IRF3-deficient bone marrow; A. Ding (Weill Medical College of Cornell University) for MyD88- and TRIF-deficient bone marrow; J. Rutledge for statistical analysis of toxic shock survival; and E. Kelly for critically reviewing the manuscript. Supported by the National Institutes of Health (AR050401, AR46713 and AI46712 to L.B.I.).

Author information

Authors and Affiliations

Authors

Contributions

A.Y. designed and did experiments and wrote the manuscript; K.H.-P.M., T.A. and X.H. did experiments; and L.B.I. designed and supervised the research and wrote the manuscript.

Corresponding author

Correspondence to Lionel B Ivashkiv.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Table 1 (PDF 348 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yarilina, A., Park-Min, KH., Antoniv, T. et al. TNF activates an IRF1-dependent autocrine loop leading to sustained expression of chemokines and STAT1-dependent type I interferon–response genes. Nat Immunol 9, 378–387 (2008). https://doi.org/10.1038/ni1576

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1576

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing