Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neutrophil extracellular traps in immunity and disease

Key Points

  • Neutrophil extracellular traps (NETs) protect against infection, in particular by large pathogens, but they are also implicated in the pathology associated with a growing number of immune-mediated conditions.

  • NET formation is triggered by innate immune receptors through downstream intracellular mediators that include reactive oxygen species (ROS), produced by NADPH oxidase or mitochondria, which activate myeloperoxidase (MPO), neutrophil elastase (NE) and protein-arginine deiminase type 4 (PAD4) to promote chromatin decondensation.

  • NETosis is induced in response to microbial cues and endogenous danger signals and must be tightly regulated to prevent excessive tissue damage during acute inflammation or chronic inflammatory and autoimmune disease. Microorganism size, microbial virulence factors and cytokines are regulators of NETosis.

  • NETs have several immune-modulatory functions that have been implicated in disease. They can prime other immune cells to induce sterile inflammation or potentiate autoimmunity by stimulating interferon responses owing to NET-associated oxidized DNA and antimicrobial peptides.

  • NETs can also occlude the vasculature by promoting thrombosis and obstruct important organ areas, capture metastatic tumours and delay wound healing in diabetes.

Abstract

Neutrophils are innate immune phagocytes that have a central role in immune defence. Our understanding of the role of neutrophils in pathogen clearance, immune regulation and disease pathology has advanced dramatically in recent years. Web-like chromatin structures known as neutrophil extracellular traps (NETs) have been at the forefront of this renewed interest in neutrophil biology. The identification of molecules that modulate the release of NETs has helped to refine our view of the role of NETs in immune protection, inflammatory and autoimmune diseases and cancer. Here, I discuss the key findings and concepts that have thus far shaped the field of NET biology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NET formation pathways.
Figure 2: Molecular mechanisms regulating NETosis.
Figure 3: NET evasion mechanisms.
Figure 4: Mechanisms of NET-mediated pathology.

Similar content being viewed by others

References

  1. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004). This is the first study to describe NETs.

    CAS  PubMed  Google Scholar 

  2. Lood, C. et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat. Med. 22, 146–153 (2016). This paper uncovers the roles of mitochondrial ROS in NETosis and DNA oxidation in the pathogenesis of autoimmunity.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Urban, C. F., Reichard, U., Brinkmann, V. & Zychlinsky, A. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell. Microbiol. 8, 668–676 (2006).

    CAS  PubMed  Google Scholar 

  4. Saitoh, T. et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe 12, 109–116 (2012).

    CAS  PubMed  Google Scholar 

  5. Abi Abdallah, D. S. et al. Toxoplasma gondii triggers release of human and mouse neutrophil extracellular traps. Infect. Immun. 80, 768–777 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Walker, M. J. et al. DNase Sda1 provides selection pressure for a switch to invasive group A streptococcal infection. Nat. Med. 13, 981–985 (2007). This study provides the first genetic evidence that NETs might have a role in blocking microbial dissemination.

    CAS  PubMed  Google Scholar 

  7. Branzk, N. et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat. Immunol. 15, 1017–1025 (2014). This paper shows that NETs are induced selectively by large microorganisms and uncovers a critical role for phagocytosis in their control.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Urban, C. F. et al. Neutrophil extracellular traps contain Calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 5, e1000639 (2009).

    PubMed  PubMed Central  Google Scholar 

  9. Dwyer, M. et al. Cystic fibrosis sputum DNA has NETosis characteristics and neutrophil extracellular trap release is regulated by macrophage migration-inhibitory factor. J. Innate Immun. 6, 765–779 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Fuchs, T. A. et al. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 176, 231–241 (2007). This paper demonstrates that NETosis is a novel form of cell death that requires ROS.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Metzler, K. D., Goosmann, C., Lubojemska, A., Zychlinsky, A. & Papayannopoulos, V. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Rep. 8, 883–896 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Pilsczek, F. H. et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J. Immunol. 185, 7413–7425 (2010).

    CAS  PubMed  Google Scholar 

  13. Yipp, B. G. et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat. Med. 18, 1386–1393 (2012). This study identifies a non-lytic form of NETosis in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hakkim, A. et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc. Natl Acad. Sci. USA 107, 9813–9818 (2010). This study idenitifes an association between NET degradation and severe SLE.

    CAS  PubMed  Google Scholar 

  15. Kolaczkowska, E. et al. Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature. Nat. Commun. 6, 6673 (2015). This study proposes a difference in the dynamics of clearance between NET-associated DNA and NET-associated protein.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Farrera, C. & Fadeel, B. Macrophage clearance of neutrophil extracellular traps is a silent process. J. Immunol. 191, 2647–2656 (2013).

    CAS  PubMed  Google Scholar 

  17. Papayannopoulos, V., Metzler, K. D., Hakkim, A. & Zychlinsky, A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell Biol. 191, 677–691 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Metzler, K. D. et al. Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood 117, 953–959 (2011). References 17 and 18 uncover a role for MPO and NE in promoting chromatin decondensation and a potential link with susceptibility to fungal infection in MPO-deficient individuals.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Schauer, C. et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat. Med. 20, 511–517 (2014). This study proposes a novel protective anti-inflammatory role for large aggregates of NETs in sterile inflammatory disease that is driven by proteolytic neutralization of pro-inflammatory factors.

    CAS  PubMed  Google Scholar 

  20. Warnatsch, A., Ioannou, M., Wang, Q. & Papayannopoulos, V. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science 349, 316–320 (2015). This study shows that NETs induced by danger signals prime macrophages for inflammation and promote atherosclerosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cools-Lartigue, J. et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J. Clin. Invest. 123, 3446–3458 (2013). This paper links the propensity for metastasis in post-operative inflammation to NET-mediated tumour capture.

    CAS  PubMed Central  Google Scholar 

  22. Rohm, M. et al. NADPH oxidase promotes neutrophil extracellular trap formation in pulmonary aspergillosis. Infect. Immun. 82, 1766–1777 (2014).

    PubMed  PubMed Central  Google Scholar 

  23. Sorensen, O. E. et al. Papillon-Lefevre syndrome patient reveals species-dependent requirements for neutrophil defenses. J. Clin. Invest. 124, 4539–4548 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Roberts, H. et al. Characterization of neutrophil function in Papillon-Lefevre syndrome. J. Leukoc. Biol. 100, 433–444 (2016).

    CAS  PubMed  Google Scholar 

  25. Akk, A., Springer, L. E. & Pham, C. T. Neutrophil extracellular traps enhance early inflammatory response in Sendai virus-induced asthma phenotype. Front. Immunol. 7, 325 (2016).

    PubMed  PubMed Central  Google Scholar 

  26. Yan, H. et al. Neutrophil proteases promote experimental abdominal aortic aneurysm via extracellular trap release and plasmacytoid dendritic cell activation. Arterioscler. Thromb. Vasc. Biol. 36, 1660–1669 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Martinod, K. et al. Neutrophil elastase-deficient mice form neutrophil extracellular traps in an experimental model of deep vein thrombosis. J. Thromb. Haemost. 14, 551–558 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Massberg, S. et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat. Med. 16, 887–896 (2010).

    CAS  PubMed  Google Scholar 

  29. Mor-Vaknin, N. et al. DEK-targeting DNA aptamers as therapeutics for inflammatory arthritis. Nat. Commun. 8, 14252 (2017). This study identifies a new chromatin-binding protein that promotes chromatin decondensation and could be a new therapeutic target.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Douda, D. N., Khan, M. A., Grasemann, H. & Palaniyar, N. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. Proc. Natl Acad. Sci. USA 112, 2817–2822 (2015).

    CAS  PubMed  Google Scholar 

  31. Hosseinzadeh, A., Thompson, P. R., Segal, B. H. & Urban, C. F. Nicotine induces neutrophil extracellular traps. J. Leukoc. Biol. 100, 1105–1112 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Csomos, K. et al. Protein cross-linking by chlorinated polyamines and transglutamylation stabilizes neutrophil extracellular traps. Cell Death Dis. 7, e2332 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Mohanty, T. et al. A novel mechanism for NETosis provides antimicrobial defense at the oral mucosa. Blood 126, 2128–2137 (2015).

    CAS  PubMed  Google Scholar 

  34. Rohrbach, A. S., Slade, D. J., Thompson, P. R. & Mowen, K. A. Activation of PAD4 in NET formation. Front. Immunol. 3, 360 (2012).

    PubMed  PubMed Central  Google Scholar 

  35. Wang, Y. et al. Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306, 279–283 (2004).

    CAS  PubMed  Google Scholar 

  36. Damgaard, D., Bjorn, M. E., Steffensen, M. A., Pruijn, G. J. & Nielsen, C. H. Reduced glutathione as a physiological co-activator in the activation of peptidylarginine deiminase. Arthritis Res. Ther. 18, 102 (2016).

    PubMed  PubMed Central  Google Scholar 

  37. Neeli, I., Dwivedi, N., Khan, S. & Radic, M. Regulation of extracellular chromatin release from neutrophils. J. Innate Immun. 1, 194–201 (2009).

    CAS  PubMed  Google Scholar 

  38. Li, P. et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J. Exp. Med. 207, 1853–1862 (2010). This study implicates PAD4 in the formation of NETs.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Vossenaar, E. R. et al. Expression and activity of citrullinating peptidylarginine deiminase enzymes in monocytes and macrophages. Ann. Rheum. Dis. 63, 373–381 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. DeSouza-Vieira, T. et al. Neutrophil extracellular traps release induced by Leishmania: role of PI3Kgamma, ERK, PI3Ksigma, PKC, and [Ca2+]. J. Leukoc. Biol. 100, 801–810 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Neeli, I. & Radic, M. Opposition between PKC isoforms regulates histone deimination and neutrophil extracellular chromatin release. Front. Immunol. 4, 38 (2013).

    PubMed  PubMed Central  Google Scholar 

  42. Romero, V. et al. Immune-mediated pore-forming pathways induce cellular hypercitrullination and generate citrullinated autoantigens in rheumatoid arthritis. Sci. Transl Med. 5, 209ra150 (2013). This paper proposes that hypercitrullination in RA originates through NET-independent mechanisms, suggesting that citrullination can be used to trace the relevant upstream pathways in vivo.

    PubMed  PubMed Central  Google Scholar 

  43. Bawadekar, M. et al. Peptidylarginine deiminase 2 is required for tumor necrosis factor alpha-induced citrullination and arthritis, but not neutrophil extracellular trap formation. J. Autoimmun. 80, 39–47 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Leshner, M. et al. PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures. Front. Immunol. 3, 307 (2012).

    PubMed  PubMed Central  Google Scholar 

  45. Wang, Y. et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J. Cell Biol. 184, 205–213 (2009). This paper shows that NET histones are citrullinated by PAD4.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lewis, H. D. et al. Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation. Nat. Chem. Biol. 11, 189–191 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wong, S. L. et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat. Med. 21, 815–819 (2015). This study shows that high glucose levels increase NET release in wounds and that this delays the healing process.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Knight, J. S. et al. Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis. Circ. Res. 114, 947–956 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Konig, M. F. & Andrade, F. A. Critical reappraisal of neutrophil extracellular traps and NETosis mimics based on differential requirements for protein citrullination. Front. Immunol. 7, 461 (2016).

    PubMed  PubMed Central  Google Scholar 

  50. Hakkim, A. et al. Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat. Chem. Biol. 7, 75–77 (2011).

    CAS  PubMed  Google Scholar 

  51. Gabriel, C., McMaster, W. R., Girard, D. & Descoteaux, A. Leishmania donovani promastigotes evade the antimicrobial activity of neutrophil extracellular traps. J. Immunol. 185, 4319–4327 (2010).

    CAS  PubMed  Google Scholar 

  52. Behnen, M. et al. Immobilized immune complexes induce neutrophil extracellular trap release by human neutrophil granulocytes via FcgammaRIIIB and Mac-1. J. Immunol. 193, 1954–1965 (2014).

    CAS  PubMed  Google Scholar 

  53. Douda, D. N., Yip, L., Khan, M. A., Grasemann, H. & Palaniyar, N. Akt is essential to induce NADPH-dependent NETosis and to switch the neutrophil death to apoptosis. Blood 123, 597–600 (2014).

    CAS  PubMed  Google Scholar 

  54. Remijsen, Q. et al. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res. 21, 290–304 (2011).

    CAS  PubMed  Google Scholar 

  55. Ma, R. et al. Extracellular DNA traps released by acute promyelocytic leukemia cells through autophagy. Cell Death Dis. 7, e2283 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. McInturff, A. M. et al. Mammalian target of rapamycin regulates neutrophil extracellular trap formation via induction of hypoxia-inducible factor 1 alpha. Blood 120, 3118–3125 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Tang, S. et al. Neutrophil extracellular trap formation is associated with autophagy-related signalling in ANCA-associated vasculitis. Clin. Exp. Immunol. 180, 408–418 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Filomeni, G., De Zio, D. & Cecconi, F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ. 22, 377–388 (2015).

    CAS  PubMed  Google Scholar 

  59. Bhattacharya, A. et al. Autophagy is required for neutrophil-mediated inflammation. Cell Rep. 12, 1731–1739 (2015).

    CAS  PubMed  Google Scholar 

  60. Mulay, S. R. et al. Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis. Nat. Commun. 7, 10274 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Desai, J. et al. PMA and crystal-induced neutrophil extracellular trap formation involves RIPK1-RIPK3-MLKL signaling. Eur. J. Immunol. 46, 223–229 (2016).

    CAS  PubMed  Google Scholar 

  62. Amini, P. et al. NET formation can occur independently of RIPK3 and MLKL signaling. Eur. J. Immunol. 46, 178–184 (2016).

    CAS  PubMed  Google Scholar 

  63. Pieterse, E. et al. Blood-borne phagocytes internalize urate microaggregates and prevent intravascular NETosis by urate crystals. Sci. Rep. 6, 38229 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Aleyd, E. et al. IgA enhances NETosis and release of neutrophil extracellular traps by polymorphonuclear cells via Fcalpha receptor I. J. Immunol. 192, 2374–2383 (2014).

    CAS  PubMed  Google Scholar 

  65. Riyapa, D. et al. Neutrophil extracellular traps exhibit antibacterial activity against Burkholderia pseudomallei and are influenced by bacterial and host factors. Infect. Immun. 80, 3921–3929 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Stevens, M. P. & Galyov, E. E. Exploitation of host cells by Burkholderia pseudomallei. Int. J. Med. Microbiol. 293, 549–555 (2004).

    CAS  PubMed  Google Scholar 

  67. Vong, L., Lorentz, R. J., Assa, A., Glogauer, M. & Sherman, P. M. Probiotic Lactobacillus rhamnosus inhibits the formation of neutrophil extracellular traps. J. Immunol. 192, 1870–1877 (2014).

    CAS  PubMed  Google Scholar 

  68. Malachowa, N. et al. Contribution of Staphylococcus aureus coagulases and clumping Factor A. to abscess formation in a rabbit model of skin and soft tissue infection. PLoS ONE 11, e0158293 (2016).

    PubMed  PubMed Central  Google Scholar 

  69. Cheng, A. G. et al. Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. PLoS Pathog. 6, e1001036 (2010).

    PubMed  PubMed Central  Google Scholar 

  70. Johnson, M. B. & Criss, A. K. Neisseria gonorrhoeae phagosomes delay fusion with primary granules to enhance bacterial survival inside human neutrophils. Cell. Microbiol. 15, 1323–1340 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Floyd, M. et al. Swimming motility mediates the formation of neutrophil extracellular traps induced by flagellated Pseudomonas aeruginosa. PLoS Pathog. 12, e1005987 (2016).

    PubMed  PubMed Central  Google Scholar 

  72. Sano, G. et al. Flagella facilitate escape of Salmonella from oncotic macrophages. J. Bacteriol. 189, 8224–8232 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Knodler, L. A. et al. Dissemination of invasive Salmonella via bacterial-induced extrusion of mucosal epithelia. Proc. Natl Acad. Sci. USA 107, 17733–17738 (2010).

    CAS  PubMed  Google Scholar 

  74. Yoo, D. G. et al. Release of cystic fibrosis airway inflammatory markers from Pseudomonas aeruginosa-stimulated human neutrophils involves NADPH oxidase-dependent extracellular DNA trap formation. J. Immunol. 192, 4728–4738 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Spaan, A. N., Surewaard, B. G., Nijland, R. & van Strijp, J. A. Neutrophils versus Staphylococcus aureus: a biological tug of war. Annu. Rev. Microbiol. 67, 629–650 (2013).

    CAS  PubMed  Google Scholar 

  76. Malachowa, N., Kobayashi, S. D., Freedman, B., Dorward, D. W. & DeLeo, F. R. Staphylococcus aureus leukotoxin GH promotes formation of neutrophil extracellular traps. J. Immunol. 191, 6022–6029 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Gillenius, E. & Urban, C. F. The adhesive protein invasin of Yersinia pseudotuberculosis induces neutrophil extracellular traps via beta1 integrins. Microbes Infect. 17, 327–336 (2015).

    CAS  PubMed  Google Scholar 

  78. Jayaprakash, K., Demirel, I., Khalaf, H. & Bengtsson, T. The role of phagocytosis, oxidative burst and neutrophil extracellular traps in the interaction between neutrophils and the periodontal pathogen Porphyromonas gingivalis. Mol. Oral Microbiol. 30, 361–375 (2015).

    CAS  PubMed  Google Scholar 

  79. Chang, Y. C. et al. Group B Streptococcus engages an inhibitory Siglec through sialic acid mimicry to blunt innate immune and inflammatory responses in vivo. PLoS Pathog. 10, e1003846 (2014).

    PubMed  PubMed Central  Google Scholar 

  80. Secundino, I. et al. Host and pathogen hyaluronan signal through human siglec-9 to suppress neutrophil activation. J. Mol. Med. (Berl.) 94, 219–233 (2016).

    CAS  Google Scholar 

  81. Khatua, B., Bhattacharya, K. & Mandal, C. Sialoglycoproteins adsorbed by Pseudomonas aeruginosa facilitate their survival by impeding neutrophil extracellular trap through siglec-9. J. Leukoc. Biol. 91, 641–655 (2012).

    CAS  PubMed  Google Scholar 

  82. Ali, S. R. et al. Siglec-5 and Siglec-14 are polymorphic paired receptors that modulate neutrophil and amnion signaling responses to group B Streptococcus. J. Exp. Med. 211, 1231–1242 (2014). References 79 and 82 uncover novel virulence mechanisms used by microorganisms to regulate neutrophil function.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Steevels, T. A. et al. Signal inhibitory receptor on leukocytes-1 (SIRL-1) negatively regulates the oxidative burst in human phagocytes. Eur. J. Immunol. 43, 1297–1308 (2013).

    CAS  PubMed  Google Scholar 

  84. Van Avondt, K., Fritsch-Stork, R., Derksen, R. H. & Meyaard, L. Ligation of signal inhibitory receptor on leukocytes-1 suppresses the release of neutrophil extracellular traps in systemic lupus erythematosus. PLoS ONE 8, e78459 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Van Avondt, K., van der Linden, M., Naccache, P. H., Egan, D. A. & Meyaard, L. Signal inhibitory receptor on leukocytes-1 limits the formation of neutrophil extracellular traps, but preserves intracellular bacterial killing. J. Immunol. 196, 3686–3694 (2016).

    CAS  PubMed  Google Scholar 

  86. Hirschfeld, J. et al. Neutrophil extracellular trap formation in supragingival biofilms. Int. J. Med. Microbiol. 305, 453–463 (2015).

    CAS  PubMed  Google Scholar 

  87. Bates, S. et al. Role of the Candida albicans MNN1 gene family in cell wall structure and virulence. BMC Res. Notes 6, 294 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Milligan, K. L. et al. Complete myeloperoxidase deficiency: beware the “false-positive” dihydrorhodamine oxidation. J. Pediatr. 176, 204–206 (2016).

    PubMed  Google Scholar 

  89. Bianchi, M. et al. Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood 114, 2619–2622 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Martinod, K. et al. PAD4-deficiency does not affect bacteremia in polymicrobial sepsis and ameliorates endotoxemic shock. Blood 125, 1948–1956 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. de Jong, H. K. et al. Neutrophil extracellular traps in the host defense against sepsis induced by Burkholderia pseudomallei (melioidosis). Intensive Care Med. Exp. 2, 21 (2014).

    PubMed  PubMed Central  Google Scholar 

  92. Thammavongsa, V., Missiakas, D. M. & Schneewind, O. Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science 342, 863–866 (2013). This study proposes a mechanism for pathogens to convert NETs into compounds that promote macrophage apoptosis around bacterial abscesses.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Abi Abdallah, D. S. & Denkers, E. Y. Neutrophils cast extracellular traps in response to protozoan parasites. Front. Immunol. 3, 382 (2012).

    PubMed  Google Scholar 

  94. Funchal, G. A. et al. Respiratory syncytial virus fusion protein promotes TLR-4-dependent neutrophil extracellular trap formation by human neutrophils. PLoS ONE 10, e0124082 (2015).

    PubMed  PubMed Central  Google Scholar 

  95. Hemmers, S., Teijaro, J. R., Arandjelovic, S. & Mowen, K. A. PAD4-mediated neutrophil extracellular trap formation is not required for immunity against influenza infection. PLoS ONE 6, e22043 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Ellis, G. T. et al. TRAIL+ monocytes and monocyte-related cells cause lung damage and thereby increase susceptibility to influenza-Streptococcus pneumoniae coinfection. EMBO Rep. 16, 1203–1218 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Pillai, P. S. et al. Mx1 reveals innate pathways to antiviral resistance and lethal influenza disease. Science 352, 463–466 (2016). This study shows the detrimental effect of excessive NET formation in response to microbial outgrowth in severe influenza virus infection.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Narasaraju, T. et al. Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am. J. Pathol. 179, 199–210 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Saffarzadeh, M. et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS ONE 7, e32366 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Villanueva, E. et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J. Immunol. 187, 538–552 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Thomas, G. M. et al. Extracellular DNA traps are associated with the pathogenesis of TRALI in humans and mice. Blood 119, 6335–6343 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Xu, J. et al. Extracellular histones are major mediators of death in sepsis. Nat. Med. 15, 1318–1321 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Abrams, S. T. et al. Circulating histones are mediators of trauma-associated lung injury. Am. J. Respir. Crit. Care Med. 187, 160–169 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Hamaguchi, S. et al. Origin of circulating free DNA in sepsis: analysis of the CLP mouse model. Mediators Inflamm. 2015, 614518 (2015).

    PubMed  PubMed Central  Google Scholar 

  105. Poon, I. et al. Phosphoinositide-mediated oligomerization of a defensin induces cell lysis. eLife 3, e01808 (2014).

    PubMed  PubMed Central  Google Scholar 

  106. Ganz, T. Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3, 710–720 (2003).

    CAS  PubMed  Google Scholar 

  107. Kawabata, K., Hagio, T. & Matsuoka, S. The role of neutrophil elastase in acute lung injury. Eur. J. Pharmacol. 451, 1–10 (2002).

    CAS  PubMed  Google Scholar 

  108. Zabieglo, K. et al. The inhibitory effect of secretory leukocyte protease inhibitor (SLPI) on formation of neutrophil extracellular traps. J. Leukoc. Biol. 98, 99–106 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Savchenko, A. S. et al. VWF-mediated leukocyte recruitment with chromatin decondensation by PAD4 increases myocardial ischemia/reperfusion injury in mice. Blood 123, 141–148 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Huang, H. et al. Damage-associated molecular pattern-activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury. Hepatology 62, 600–614 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Martinod, K. et al. Peptidylarginine deiminase 4 promotes age-related organ fibrosis. J. Exp. Med. 214, 439–458 (2017). This study demonstrates a role for PAD4 in age-related fibrosis that is thought to be mediated by chronic deposition of NETs.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Papayannopoulos, V., Staab, D. & Zychlinsky, A. Neutrophil elastase enhances sputum solubilization in cystic fibrosis patients receiving DNase therapy. PLoS ONE 6, e28526 (2011). This paper provides evidence for the presence of NETs in the sputum of patients with cystic fibrosis and a role for the protease-dependent mechanism of NETosis in facilitating sputum solubilization.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Young, R. L. et al. Neutrophil extracellular trap (NET)-mediated killing of Pseudomonas aeruginosa: evidence of acquired resistance within the CF airway, independent of CFTR. PLoS ONE 6, e23637 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Brill, A. et al. von Willebrand factor-mediated platelet adhesion is critical for deep vein thrombosis in mouse models. Blood 117, 1400–1407 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Fuchs, T. A. et al. Extracellular DNA traps promote thrombosis. Proc. Natl Acad. Sci. USA 107, 15880–15885 (2010).

    CAS  PubMed  Google Scholar 

  116. Martinod, K. et al. Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proc. Natl Acad. Sci. USA 110, 8674–8679 (2013). References 115 and 116 implicate NETs and PAD4 in thrombotic vascular occlusion.

    CAS  PubMed  Google Scholar 

  117. Jimenez-Alcazar, M. et al. Impaired DNase1-mediated degradation of neutrophil extracellular traps is associated with acute thrombotic microangiopathies. J. Thromb. Haemost. 13, 732–742 (2015).

    CAS  PubMed  Google Scholar 

  118. Etulain, J. et al. P-Selectin promotes neutrophil extracellular trap formation in mice. Blood 126, 242–246 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Rossaint, J. et al. Directed transport of neutrophil-derived extracellular vesicles enables platelet-mediated innate immune response. Nat. Commun. 7, 13464 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. von Bruhl, M. L. et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J. Exp. Med. 209, 819–835 (2012).

    PubMed  PubMed Central  Google Scholar 

  121. Sporn, L. A., Marder, V. J. & Wagner, D. D. Inducible secretion of large, biologically potent von Willebrand factor multimers. Cell 46, 185–190 (1986).

    CAS  PubMed  Google Scholar 

  122. Brill, A. et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J. Thromb. Haemost. 10, 136–144 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Sambrano, G. R. et al. Cathepsin G activates protease-activated receptor-4 in human platelets. J. Biol. Chem. 275, 6819–6823 (2000).

    CAS  PubMed  Google Scholar 

  124. Leppkes, M. et al. Externalized decondensed neutrophil chromatin occludes pancreatic ducts and drives pancreatitis. Nat. Commun. 7, 10973 (2016). This study identifies a novel pathogenic mechanism for NETs induced by pancreatic juice components such as bicarbonate and calcium crystals.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Chen, G. et al. Heme-induced neutrophil extracellular traps contribute to the pathogenesis of sickle cell disease. Blood 123, 3818–3827 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Karmakar, M., Sun, Y., Hise, A. G., Rietsch, A. & Pearlman, E. Cutting edge: IL-1beta processing during Pseudomonas aeruginosa infection is mediated by neutrophil serine proteases and is independent of NLRC4 and caspase-1. J. Immunol. 189, 4231–4235 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Zenaro, E. et al. Neutrophils promote Alzheimer's disease-like pathology and cognitive decline via LFA-1 integrin. Nat. Med. 21, 880–886 (2015).

    CAS  PubMed  Google Scholar 

  129. Han, W. et al. NADPH oxidase limits lipopolysaccharide-induced lung inflammation and injury in mice through reduction-oxidation regulation of NF-kappaB activity. J. Immunol. 190, 4786–4794 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Reber, L. L., Gaudenzio, N., Starkl, P. & Galli, S. J. Neutrophils are not required for resolution of acute gouty arthritis in mice. Nat. Med. 22, 1382–1384 (2016). This work contradicts the findings in reference 14 by using a neutrophil depletion strategy.

    CAS  PubMed  Google Scholar 

  131. Munoz, L. E. et al. Nanoparticles size-dependently initiate self-limiting NETosis-driven inflammation. Proc. Natl Acad. Sci. USA 113, E5856–E5865 (2016).

    CAS  PubMed  Google Scholar 

  132. Azevedo, E. P. et al. A metabolic shift toward pentose phosphate pathway is necessary for amyloid fibril- and phorbol 12-myristate 13-acetate-induced neutrophil extracellular trap (NET) formation. J. Biol. Chem. 290, 22174–22183 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Rodriguez-Espinosa, O., Rojas-Espinosa, O., Moreno-Altamirano, M. M., Lopez-Villegas, E. O. & Sanchez-Garcia, F. J. Metabolic requirements for neutrophil extracellular traps formation. Immunology 145, 213–224 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Karima, M. et al. Enhanced superoxide release and elevated protein kinase C activity in neutrophils from diabetic patients: association with periodontitis. J. Leukoc. Biol. 78, 862–870 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Yu, T., Robotham, J. L. & Yoon, Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc. Natl Acad. Sci. USA 103, 2653–2658 (2006).

    CAS  PubMed  Google Scholar 

  136. Joshi, M. B. et al. High glucose modulates IL-6 mediated immune homeostasis through impeding neutrophil extracellular trap formation. FEBS Lett. 587, 2241–2246 (2013).

    CAS  PubMed  Google Scholar 

  137. Qin, J., Fu, S., Speake, C., Greenbaum, C. J. & Odegard, J. M. NETosis-associated serum biomarkers are reduced in type 1 diabetes in association with neutrophil count. Clin. Exp. Immunol. 184, 318–322 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Wang, Y. et al. Increased neutrophil elastase and proteinase 3 and augmented NETosis are closely associated with beta-cell autoimmunity in patients with type 1 diabetes. Diabetes 63, 4239–4248 (2014).

    CAS  PubMed  Google Scholar 

  139. Lammermann, T. et al. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature 498, 371–375 (2013).

    PubMed  Google Scholar 

  140. El Kebir, D. & Filep, J. G. Modulation of neutrophil apoptosis and the resolution of inflammation through beta2 integrins. Front. Immunol. 4, 60 (2013).

    PubMed  PubMed Central  Google Scholar 

  141. Braster, Q. et al. Inhibition of NET release fails to reduce adipose tissue inflammation in mice. PLoS ONE 11, e0163922 (2016).

    PubMed  PubMed Central  Google Scholar 

  142. Talukdar, S. et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat. Med. 18, 1407–1412 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Warnatsch, A. et al. Reactive oxygen species localization programs inflammation to clear microbes of different size. Immunity 46, 421–432 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Toussaint, M. et al. Host DNA released by NETosis promotes rhinovirus-induced type-2 allergic asthma exacerbation. Nat. Med. 23, 681–691 (2017). This reference describes a novel immunological role for NETs in potentiating pathogenic T helper 2-type allergic responses.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Kessenbrock, K. et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat. Med. 15, 623–625 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Khandpur, R. et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl Med. 5, 178ra140 (2013).

    Google Scholar 

  147. Garcia-Romo, G. S. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl Med. 3, 73ra20 (2011).

    PubMed  PubMed Central  Google Scholar 

  148. Lande, R. et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci. Transl Med. 3, 73ra19 (2011). References 145–148 describe a pathogenic feedback loop between NET release and pDC activation in patients with autoimmune disease.

    PubMed  PubMed Central  Google Scholar 

  149. Guiducci, C. et al. Autoimmune skin inflammation is dependent on plasmacytoid dendritic cell activation by nucleic acids via TLR7 and TLR9. J. Exp. Med. 207, 2931–2942 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Sangaletti, S. et al. Neutrophil extracellular traps mediate transfer of cytoplasmic neutrophil antigens to myeloid dendritic cells toward ANCA induction and associated autoimmunity. Blood 120, 3007–3018 (2012).

    CAS  PubMed  Google Scholar 

  151. Lande, R. et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449, 564–569 (2007). This work provides a molecular paradigm for the increased interferon-inducing potential of NETs, based on the potentiation of DNA signalling by the association with antimicrobial peptides.

    CAS  PubMed  Google Scholar 

  152. Campbell, A. M., Kashgarian, M. & Shlomchik, M. J. NADPH oxidase inhibits the pathogenesis of systemic lupus erythematosus. Sci. Transl Med. 4, 157ra141 (2012).

    PubMed  PubMed Central  Google Scholar 

  153. Huang, X. et al. Neutrophils regulate humoral autoimmunity by restricting interferon-gamma production via the generation of reactive oxygen species. Cell Rep. 12, 1120–1132 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Gehrke, N. et al. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing. Immunity 39, 482–495 (2013).

    CAS  PubMed  Google Scholar 

  155. Knight, J. S. et al. Peptidylarginine deiminase inhibition is immunomodulatory and vasculoprotective in murine lupus. J. Clin. Invest. 123, 2981–2993 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Knight, J. S. et al. Peptidylarginine deiminase inhibition disrupts NET formation and protects against kidney, skin and vascular disease in lupus-prone MRL/lpr mice. Ann. Rheum. Dis. 74, 2199–2206 (2015).

    CAS  PubMed  Google Scholar 

  157. Seri, Y. et al. Peptidylarginine deiminase type 4 deficiency reduced arthritis severity in a glucose-6-phosphate isomerase-induced arthritis model. Sci. Rep. 5, 13041 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Papadaki, G. et al. Neutrophil extracellular traps exacerbate Th1-mediated autoimmune responses in rheumatoid arthritis by promoting DC maturation. Eur. J. Immunol. 46, 2542–2554 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Rohrbach, A. S., Hemmers, S., Arandjelovic, S., Corr, M. & Mowen, K. A. PAD4 is not essential for disease in the K/BxN murine autoantibody-mediated model of arthritis. Arthritis Res. Ther. 14, R104 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Hu, S. C. et al. Neutrophil extracellular trap formation is increased in psoriasis and induces human beta-defensin-2 production in epidermal keratinocytes. Sci. Rep. 6, 31119 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Henry, C. M. et al. Neutrophil-derived proteases escalate inflammation through activation of IL-36 family cytokines. Cell Rep. 14, 708–722 (2016).

    CAS  PubMed  Google Scholar 

  162. Marrakchi, S. et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N. Engl. J. Med. 365, 620–628 (2011).

    CAS  PubMed  Google Scholar 

  163. Demers, M. et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc. Natl Acad. Sci. USA 109, 13076–13081 (2012).

    CAS  PubMed  Google Scholar 

  164. Guglietta, S. et al. Coagulation induced by C3aR-dependent NETosis drives protumorigenic neutrophils during small intestinal tumorigenesis. Nat. Commun. 7, 11037 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Cedervall, J. et al. Neutrophil extracellular traps accumulate in peripheral blood vessels and compromise organ function in tumor-bearing animals. Cancer Res. 75, 2653–2662 (2015).

    CAS  PubMed  Google Scholar 

  166. Boone, B. A. et al. The receptor for advanced glycation end products (RAGE) enhances autophagy and neutrophil extracellular traps in pancreatic cancer. Cancer Gene Ther. 22, 326–334 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Wen, F., Shen, A., Choi, A., Gerner, E. W. & Shi, J. Extracellular DNA in pancreatic cancer promotes cell invasion and metastasis. Cancer Res. 73, 4256–4266 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Demers, M. et al. Priming of neutrophils toward NETosis promotes tumor growth. Oncoimmunology 5, e1134073 (2016).

    PubMed  PubMed Central  Google Scholar 

  169. Houghton, A. M. et al. Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nat. Med. 16, 219–223 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Wculek, S. K. & Malanchi, I. Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature 528, 413–417 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Coffelt, S. B. et al. IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522, 345–348 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Park, J. et al. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci. Transl Med. 8, 361ra138 (2016).

    PubMed  PubMed Central  Google Scholar 

  173. Clark, S. R. et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 13, 463–469 (2007). This study describes a platelet-mediated mechanism for the activation of NETosis during sepsis.

    CAS  PubMed  Google Scholar 

  174. Maugeri, N. et al. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J. Thromb. Haemost. 12, 2074–2088 (2014).

    CAS  PubMed  Google Scholar 

  175. Sreeramkumar, V. et al. Neutrophils scan for activated platelets to initiate inflammation. Science 346, 1234–1238 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Tadie, J. M. et al. HMGB1 promotes neutrophil extracellular trap formation through interactions with Toll-like receptor 4. Am. J. Physiol. Lung Cell. Mol. Physiol. 304, L342–L349 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Loures, F. V. et al. Recognition of Aspergillus fumigatus hyphae by human plasmacytoid dendritic cells is mediated by dectin-2 and results in formation of extracellular traps. PLoS Pathog. 11, e1004643 (2015).

    PubMed  PubMed Central  Google Scholar 

  178. Byrd, A. S., O'Brien, X. M., Johnson, C. M., Lavigne, L. M. & Reichner, J. S. An extracellular matrix-based mechanism of rapid neutrophil extracellular trap formation in response to Candida albicans. J. Immunol. 190, 4136–4148 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Sousa-Rocha, D. et al. Trypanosoma cruzi and its soluble antigens induce NET release by stimulating Toll-like receptors. PLoS ONE 10, e0139569 (2015).

    PubMed  PubMed Central  Google Scholar 

  180. Sheedy, F. J. et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat. Immunol. 14, 812–820 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. DeLeon-Pennell, K. Y. et al. CD36 is a matrix metalloproteinase-9 substrate that stimulates neutrophil apoptosis and removal during cardiac remodeling. Circ. Cardiovasc. Genet. 9, 14–25 (2016).

    CAS  PubMed  Google Scholar 

  182. Aleman, O. R., Mora, N., Cortes-Vieyra, R., Uribe-Querol, E. & Rosales, C. Differential use of human neutrophil Fcgamma receptors for inducing neutrophil extracellular trap formation. J. Immunol. Res. 2016, 2908034 (2016).

    PubMed  PubMed Central  Google Scholar 

  183. Kawasaki, H. & Iwamuro, S. Potential roles of histones in host defense as antimicrobial agents. Infect. Disord. Drug Targets 8, 195–205 (2008).

    CAS  PubMed  Google Scholar 

  184. Bianchi, M., Niemiec, M. J., Siler, U., Urban, C. F. & Reichenbach, J. Restoration of anti-Aspergillus defense by neutrophil extracellular traps in human chronic granulomatous disease after gene therapy is calprotectin-dependent. J. Allergy Clin. Immunol. 127, 1243–1252.e7 (2011).

    CAS  PubMed  Google Scholar 

  185. Juneau, R. A., Stevens, J. S., Apicella, M. A. & Criss, A. K. A thermonuclease of Neisseria gonorrhoeae enhances bacterial escape from killing by neutrophil extracellular traps. J. Infect. Dis. 212, 316–324 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Buchanan, J. T. et al. DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr. Biol. 16, 396–400 (2006). This is the first study to describe a novel virulence role for bacterial DNases in promoting escape from NET entrapment.

    CAS  PubMed  Google Scholar 

  187. Wartha, F. et al. Capsule and D-alanylated lipoteichoic acids protect Streptococcus pneumoniae against neutrophil extracellular traps. Cell. Microbiol. 9, 1162–1171 (2007).

    CAS  PubMed  Google Scholar 

  188. Beiter, K. et al. An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps. Curr. Biol. 16, 401–407 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

V.P. is supported by the Francis Crick Institute, which receives its core funding from the UK Medical Research Council, Cancer Research UK and the Wellcome Trust (FC001129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venizelos Papayannopoulos.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Glossary

Neutrophil elastase

(NE). A neutrophil-specific antimicrobial serine protease stored in azurophilic granules.

Myeloperoxidase

(MPO). A haem-containing enzyme that reacts with hydrogen peroxide to generate hypochlorite and other halide oxidants.

NADPH oxidase

A membrane-associated complex of proteins that transfer electrons from NADPH to molecular oxygen to generate the oxygen radical superoxide.

Azurophilic granules

A subset of neutrophil granules that contain antimicrobials such as myeloperoxidase and neutrophil elastase. Within the granule membranes, a complex of eight antimicrobial proteins forms the azurosome.

Chronic granulomatous disease

(CGD). An inherited X-linked immune deficiency caused by genetic mutations that disrupt the activity of NADPH oxidase. It is associated with hyperinflammation and increased susceptibility to bacterial and fungal infections.

Thrombosis

Formation of a blood clot (thrombus) in blood vessels, resulting in partial or complete vessel occlusion.

DEK

A DNA-binding protein that alters DNA structures and is involved in DNA repair.

Autophagy

An evolutionarily conserved process, in which acidic double-membrane vacuoles sequester intracellular contents (such as damaged organelles and macromolecules) and target them for degradation and recycling, through fusion with lysosomes.

Necroptosis

A form of programmed necrosis that is initiated by the kinases receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3 in response to external signals, in conditions in which caspase 8 activity is compromised.

Damage-associated molecular patterns

(DAMPs). Conserved mammalian motifs, recognized by pattern recognition receptors, that are broadly upregulated in response to cellular stress and that trigger an innate immune response. Examples include heat shock proteins, high mobility group protein B1 (HMGB1), DNA-binding proteins and uric acid.

Cystic fibrosis

An autosomal recessive genetic condition secondary to mutations in the cystic fibrosis transmembrane conductance regulator (a chloride channel), causing lung, gastrointestinal, endocrine and fertility complications. Chronic infection of the lungs is associated with sputum that is rich in neutrophil proteins and DNA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol 18, 134–147 (2018). https://doi.org/10.1038/nri.2017.105

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2017.105

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing