Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Signalling crosstalk in B cells: managing worth and need

Abstract

The B cell receptor (BCR) and the receptor for B cell-activating factor (BAFFR) have complementary roles in B cells: BCR signals provide a cell-intrinsic measure of suitability for negative or positive selection, whereas BAFFR responds to homeostatic demands based on a cell-extrinsic measure of the size of the mature B cell pool. Because continuous signals from both receptors are required for B cell survival, it is probable that there are mechanisms to integrate the selective and homeostatic signals from these receptors. In this Opinion article, I describe recent evidence to indicate that crosstalk between the downstream biochemical pathways of these receptors mediates this interdependence, such that BCR signals generate a limiting substrate for BAFFR signal propagation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: B cell differentiation and selection are controlled by the specificity of the BCR and the availability of BAFF.
Figure 2: Signalling crosstalk underlies the mutual dependence of the BCR and BAFFR in B cell development and survival.

References

  1. Nemazee, D. & Buerki, K. Clonal deletion of autoreactive B lymphocytes in bone marrow chimeras. Proc. Natl Acad. Sci. USA 86, 8039–8043 (1989).

    Article  CAS  Google Scholar 

  2. Hartley, S. B. et al. Elimination from peripheral lymphoid tissues of self-reactive B lymphocytes recognizing membrane-bound antigens. Nature 353, 765–769 (1991).

    Article  CAS  Google Scholar 

  3. Fulcher, D. A. & Basten, A. Reduced life span of anergic self-reactive B cells in a double-transgenic model. J. Exp. Med. 179, 125–134 (1994).

    Article  CAS  Google Scholar 

  4. Gu, H., Tarlinton, D., Muller, W., Rajewsky, K. & Forster, I. Most peripheral B cells in mice are ligand selected. J. Exp. Med. 173, 1357–1371 (1991).

    Article  CAS  Google Scholar 

  5. Torres, R. M., Flaswinkel, H., Reth, M. & Rajewsky, K. Aberrant B cell development and immune response in mice with a compromised BCR complex. Science 272, 1804–1808 (1996).

    Article  CAS  Google Scholar 

  6. Lam, K. P., Kuhn, R. & Rajewsky, K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 90, 1073–1083 (1997).

    Article  CAS  Google Scholar 

  7. Kraus, M., Alimzhanov, M. B., Rajewsky, N. & Rajewsky, K. Survival of resting mature B lymphocytes depends on BCR signaling via the Igα/β heterodimer. Cell 117, 787–800 (2004).

    Article  CAS  Google Scholar 

  8. Moore, P. A. et al. BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science 285, 260–263 (1999).

    Article  CAS  Google Scholar 

  9. Batten, M. et al. BAFF mediates survival of peripheral immature B lymphocytes. J. Exp. Med. 192, 1453–1466 (2000).

    Article  CAS  Google Scholar 

  10. Harless, S. M. et al. Competition for BLyS-mediated signaling through Bcmd/BR3 regulates peripheral B lymphocyte numbers. Curr. Biol. 11, 1986–1989 (2001).

    Article  CAS  Google Scholar 

  11. Gross, J. A. et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature 404, 995–999 (2000).

    Article  CAS  Google Scholar 

  12. Scholz, J. L. et al. BLyS inhibition eliminates primary B cells but leaves natural and acquired humoral immunity intact. Proc. Natl Acad. Sci. USA 105, 15517–15522 (2008).

    Article  CAS  Google Scholar 

  13. Stadanlick, J. E. et al. Tonic B cell antigen receptor signals supply an NF-κB substrate for prosurvival BLyS signaling. Nature Immunol. 9, 1379–1387 (2008).

    Article  CAS  Google Scholar 

  14. Meyer-Bahlburg, A., Andrews, S. F., Yu, K. O., Porcelli, S. A. & Rawlings, D. J. Characterization of a late transitional B cell population highly sensitive to BAFF-mediated homeostatic proliferation. J. Exp. Med. 205, 155–168 (2008).

    Article  CAS  Google Scholar 

  15. Hsu, B. L., Harless, S. M., Lindsley, R. C., Hilbert, D. M. & Cancro, M. P. Cutting edge: BLyS enables survival of transitional and mature B cells through distinct mediators. J. Immunol. 168, 5993–5996 (2002).

    Article  CAS  Google Scholar 

  16. Lentz, V. M., Cancro, M. P., Nashold, F. E. & Hayes, C. E. Bcmd governs recruitment of new B cells into the stable peripheral B cell pool in the A/WySnJ mouse. J. Immunol. 157, 598–606 (1996).

    CAS  PubMed  Google Scholar 

  17. Sprent, J. & Bruce, J. Physiology of B cells in mice with X-linked immunodeficiency (xid). III. Disappearance of xid B cells in double bone marrow chimeras. J. Exp. Med. 160, 711–723 (1984).

    Article  CAS  Google Scholar 

  18. Cyster, J. G., Hartley, S. B. & Goodnow, C. C. Competition for follicular niches excludes self-reactive cells from the recirculating B-cell repertoire. Nature 371, 389–395 (1994).

    Article  CAS  Google Scholar 

  19. Freitas, A. A., Rosado, M. M., Viale, A. C. & Grandien, A. The role of cellular competition in B cell survival and selection of B cell repertoires. Eur. J. Immunol. 25, 1729–1738 (1995).

    Article  CAS  Google Scholar 

  20. Pasparakis, M., Schmidt-Supprian, M. & Rajewsky, K. IκB kinase signaling is essential for maintenance of mature B cells. J. Exp. Med. 196, 743–752 (2002).

    Article  CAS  Google Scholar 

  21. Lentz, V. M., Hayes, C. E. & Cancro, M. P. Bcmd decreases the life span of B-2 but not B-1 cells in A/WySnJ mice. J. Immunol. 160, 3743–3747 (1998).

    CAS  PubMed  Google Scholar 

  22. Lesley, R. et al. Reduced competitiveness of autoantigen-engaged B cells due to increased dependence on BAFF. Immunity 20, 441–453 (2004).

    Article  CAS  Google Scholar 

  23. Thien, M. et al. Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity 20, 785–798 (2004).

    Article  CAS  Google Scholar 

  24. Hondowicz, B. D. et al. The role of BLyS/BLyS receptors in anti-chromatin B cell regulation. Int. Immunol. 19, 465–475 (2007).

    Article  CAS  Google Scholar 

  25. Smith, S. H. & Cancro, M. P. Cutting edge: B cell receptor signals regulate BLyS receptor levels in mature B cells and their immediate progenitors. J. Immunol. 170, 5820–5823 (2003).

    Article  CAS  Google Scholar 

  26. Sen, R. Control of B lymphocyte apoptosis by the transcription factor NF-κB. Immunity 25, 871–883 (2006).

    Article  CAS  Google Scholar 

  27. Senftleben, U. et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science 293, 1495–1499 (2001).

    Article  CAS  Google Scholar 

  28. Ghosh, S., May, M. J. & Kopp, E. B. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225–260 (1998).

    Article  CAS  Google Scholar 

  29. Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18, 621–663 (2000).

    Article  CAS  Google Scholar 

  30. Xue, L. et al. Defective development and function of Bcl10-deficient follicular, marginal zone and B1 B cells. Nature Immunol. 4, 857–865 (2003).

    Article  CAS  Google Scholar 

  31. Mak, T. W. & Yeh, W. C. Signaling for survival and apoptosis in the immune system. Arthritis Res. 4 (Suppl. 3), 243–252 (2002).

    Article  Google Scholar 

  32. Yamada, T. et al. Abnormal immune function of hemopoietic cells from alymphoplasia (aly) mice, a natural strain with mutant NF-κB-inducing kinase. J. Immunol. 165, 804–812 (2000).

    Article  CAS  Google Scholar 

  33. Claudio, E., Brown, K., Park, S., Wang, H. & Siebenlist, U. BAFF-induced NEMO-independent processing of NF-κB2 in maturing B cells. Nature Immunol. 3, 958–965 (2002).

    Article  CAS  Google Scholar 

  34. Grumont, R. J. & Gerondakis, S. The subunit composition of NF-κB complexes changes during B-cell development. Cell Growth Differ. 5, 1321–1331 (1994).

    CAS  PubMed  Google Scholar 

  35. Caamano, J. H. et al. Nuclear factor (NF)-κB2 (p100/p52) is required for normal splenic microarchitecture and B cell-mediated immune responses. J. Exp. Med. 187, 185–196 (1998).

    Article  CAS  Google Scholar 

  36. Francis, D. A., Sen, R., Rice, N. & Rothstein, T. L. Receptor-specific induction of NF-κB components in primary B cells. Int. Immunol. 10, 285–293 (1998).

    Article  CAS  Google Scholar 

  37. Grumont, R. J. et al. B lymphocytes differentially use the Rel and nuclear factor κB1 (NF-κB1) transcription factors to regulate cell cycle progression and apoptosis in quiescent and mitogen-activated cells. J. Exp. Med. 187, 663–674 (1998).

    Article  CAS  Google Scholar 

  38. Do, R. K. et al. Attenuation of apoptosis underlies B lymphocyte stimulator enhancement of humoral immune response. J. Exp. Med. 192, 953–964 (2000).

    Article  CAS  Google Scholar 

  39. Hatada, E. N. et al. NF-κB1 p50 is required for BLyS attenuation of apoptosis but dispensable for processing of NF-κB2 p100 to p52 in quiescent mature B cells. J. Immunol. 171, 761–768 (2003).

    Article  CAS  Google Scholar 

  40. Moscat, J., Diaz-Meco, M. T. & Rennert, P. NF-κB activation by protein kinase C isoforms and B-cell function. EMBO Rep. 4, 31–36 (2003).

    Article  CAS  Google Scholar 

  41. Sasaki, Y., Casola, S., Kutok, J. L., Rajewsky, K. & Schmidt-Supprian, M. TNF family member B cell-activating factor (BAFF) receptor-dependent and -independent roles for BAFF in B cell physiology. J. Immunol. 173, 2245–2252 (2004).

    Article  CAS  Google Scholar 

  42. Enzler, T. et al. Alternative and classical NF-κB signaling retain autoreactive B cells in the splenic marginal zone and result in lupus-like disease. Immunity 25, 403–415 (2006).

    Article  CAS  Google Scholar 

  43. Sasaki, Y. et al. Canonical NF-κB activity, dispensable for B cell development, replaces BAFF-receptor signals and promotes B cell proliferation upon activation. Immunity 24, 729–739 (2006).

    Article  CAS  Google Scholar 

  44. DeFranco, A. L. et al. Signal transduction by the B-cell antigen receptor. Ann. NY Acad. Sci. 766, 195–201 (1995).

    Article  CAS  Google Scholar 

  45. Reth, M. & Wienands, J. Initiation and processing of signals from the B cell antigen receptor. Annu. Rev. Immunol. 15, 453–479 (1997).

    Article  CAS  Google Scholar 

  46. Xie, P., Stunz, L. L., Larison, K. D., Yang, B. & Bishop, G. A. Tumor necrosis factor receptor-associated factor 3 is a critical regulator of B cell homeostasis in secondary lymphoid organs. Immunity 27, 253–267 (2007).

    Article  Google Scholar 

  47. Gardam, S., Sierro, F., Basten, A., Mackay, F. & Brink, R. TRAF2 and TRAF3 signal adapters act cooperatively to control the maturation and survival signals delivered to B cells by the BAFF receptor. Immunity 28, 391–401 (2008).

    Article  CAS  Google Scholar 

  48. Shinners, N. P. et al. Bruton's tyrosine kinase mediates NF-κB activation and B cell survival by B cell-activating factor receptor of the TNF-R family. J. Immunol. 179, 3872–3880 (2007).

    Article  CAS  Google Scholar 

  49. Patke, A., Mecklenbrauker, I. & Tarakhovsky, A. Survival signaling in resting B cells. Curr. Opin. Immunol. 16, 251–255 (2004).

    Article  CAS  Google Scholar 

  50. Castro, I. et al. B cell receptor-mediated sustained c-Rel activation facilitates late transitional B cell survival through control of B cell activating factor receptor and NF-κB2. J. Immunol. 182, 7729–7737 (2009).

    Article  CAS  Google Scholar 

  51. Andrews, S. F. & Rawlings, D. J. Transitional B cells exhibit a B cell receptor-specific nuclear defect in gene transcription. J. Immunol. 182, 2868–2878 (2009).

    Article  CAS  Google Scholar 

  52. Anzelon, A. N., Wu, H. & Rickert, R. C. Pten inactivation alters peripheral B lymphocyte fate and reconstitutes CD19 function. Nature Immunol. 4, 287–294 (2003).

    Article  CAS  Google Scholar 

  53. Coope, H. J. et al. CD40 regulates the processing of NF-κB2 p100 to p52. Embo J. 21, 5375–5385 (2002).

    Article  CAS  Google Scholar 

  54. Ghosh, S. & Hayden, M. S. New regulators of NF-κB in inflammation. Nature Rev. Immunol. 8, 837–848 (2008).

    Article  CAS  Google Scholar 

  55. Basak, S. & Hoffmann, A. Crosstalk via the NF-κB signaling system. Cytokine Growth Factor Rev. 19, 187–197 (2008).

    Article  CAS  Google Scholar 

  56. Tucker, E. et al. A novel mutation in the Nfkb2 gene generates an NF-κB2 “super repressor”. J. Immunol. 179, 7514–7522 (2007).

    Article  CAS  Google Scholar 

  57. Tan, J. T. et al. IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc. Natl Acad. Sci. USA 98, 8732–8737 (2001).

    Article  CAS  Google Scholar 

  58. Seddon, B. & Zamoyska, R. TCR and IL-7 receptor signals can operate independently or synergize to promote lymphopenia-induced expansion of naive T cells. J. Immunol. 169, 3752–3759 (2002).

    Article  CAS  Google Scholar 

  59. Seddon, B. & Zamoyska, R. TCR signals mediated by Src family kinases are essential for the survival of naive T cells. J. Immunol. 169, 2997–3005 (2002).

    Article  CAS  Google Scholar 

  60. Tan, J. T. et al. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J. Exp. Med. 195, 1523–1532 (2002).

    Article  CAS  Google Scholar 

  61. Seddon, B., Tomlinson, P. & Zamoyska, R. Interleukin 7 and T cell receptor signals regulate homeostasis of CD4 memory cells. Nature Immunol. 4, 680–686 (2003).

    Article  CAS  Google Scholar 

  62. Caserta, S. & Zamoyska, R. Memories are made of this: synergy of T cell receptor and cytokine signals in CD4+ central memory cell survival. Trends Immunol. 28, 245–248 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank A. Bhandoola for thoughtful discussion and criticism.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Michael Cancro's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cancro, M. Signalling crosstalk in B cells: managing worth and need. Nat Rev Immunol 9, 657–661 (2009). https://doi.org/10.1038/nri2621

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2621

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing