Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunomodulatory functions of type I interferons

Key Points

  • Interferons (IFNs) are widely expressed cytokines with strong antiviral properties. There are three main types of IFNs: type I IFNs, type II IFN and type III IFNs. In addition to their role in response to viruses, type I IFNs (mainly IFNα and IFNβ) are induced by bacterial infections.

  • The production of type I IFNs in response to bacterial ligands is mediated through Toll-like receptor (TLR)-dependent and -independent mechanisms. TLR3, TLR4, TLR7 and TLR9 have been linked to the production of type I IFNs. The TLR-independent pathways involve the cytoplasmic nucleic acid sensors retinoic-acid-inducible gene I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), stimulator of interferon genes (STING) and DNA-dependent activator of IRFs (DAI).

  • Type I IFNs activate several Janus kinase (JAK)–signal transducer and activator of transcription (STAT) signalling pathways, which regulate the transcription of target genes. In addition to the classical JAK–STAT signalling pathways, type I IFNs activate other signalling cascades.

  • Type I IFNs mediate the regulatory functions of dendritic cells in the gut and the protective effect of TLR ligands in colonic injury.

  • Activation of type I IFN signalling has an important role in T helper cell differentiation and in the suppressive function of regulatory T cells.

  • Type I IFNs both negatively and positively regulate the activation of different types of inflammasome complex and the production of interleukin-1β.

  • In addition to their role as antiviral cytokines, type I IFNs have a wide range of immunomodulatory effects in response to bacterial infections.

  • Type I IFNs are implicated in different autoimmune and inflammatory conditions, although their role in each condition varies. Some autoimmune diseases are improved by the biological effects of type I IFNs, whereas others benefit from type I IFN inhibition.

Abstract

Interferon-α (IFNα) and IFNβ, collectively known as type I IFNs, are the major effector cytokines of the host immune response against viral infections. However, the production of type I IFNs is also induced in response to bacterial ligands of innate immune receptors and/or bacterial infections, indicating a broader physiological role for these cytokines in host defence and homeostasis than was originally assumed. The main focus of this Review is the underappreciated immunomodulatory functions of type I IFNs in health and disease. We discuss their function in the regulation of innate and adaptive immune responses, the response to bacterial ligands, inflammasome activation, intestinal homeostasis and inflammatory and autoimmune diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Signalling pathways activated by type I and type II IFNs.
Figure 2: Type I IFNs regulate inflammasome activation.
Figure 3: IL-1R1 signalling regulates type I IFN production.
Figure 4: Type I IFNs in human diseases.

Similar content being viewed by others

References

  1. Jenner, E. Letter to the Editor. Med. Phys. J. 12, 97–102 (1804).

    PubMed  PubMed Central  Google Scholar 

  2. Salaman, R. N. Protective inoculation against a plant virus. Nature 131, 468 (1933).

    Article  Google Scholar 

  3. White, P. B. Lysogenic strains of V. cholerae and the influence of lysozyme on cholera phage activity. J. Pathol. Bacteriol. 44, 276–278 (1937).

    Article  Google Scholar 

  4. Hoskins, M. A protective action of neurotropic against viscerotropic yellow fever virus in Macacus rhesus. Am. J. Trop. Med. 15, 675–680 (1935).

    Article  Google Scholar 

  5. Isaacs, A. & Lindenmann, J. Virus interference. I. The interferon. Proc. R. Soc. Lond. B Biol. Sci. 147, 258–267 (1957).

    Article  CAS  PubMed  Google Scholar 

  6. Pestka, S., Krause, C. D. & Walter, M. R. Interferons, interferon-like cytokines, and their receptors. Immunol. Rev. 202, 8–32 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Gad, H. H. et al. Interferon-λ is functionally an interferon but structurally related to the interleukin-10 family. J. Biol. Chem. 284, 20869–20875 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hacker, H. et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439, 204–207 (2006). This study showed that TRAF3 is essential for both type I IFN and IL-10 production, but dispensable for the production of pro-inflammatory cytokines.

    Article  PubMed  CAS  Google Scholar 

  9. Schafer, S. L., Lin, R., Moore, P. A., Hiscott, J. & Pitha, P. M. Regulation of type I interferon gene expression by interferon regulatory factor-3. J. Biol. Chem. 273, 2714–2720 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Monroe, K. M., McWhirter, S. M. & Vance, R. E. Induction of type I interferons by bacteria. Cell. Microbiol. 12, 881–890 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Trinchieri, G. Type I interferon: friend or foe? J. Exp. Med. 207, 2053–2063 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Akira, S. Toll-like receptors and innate immunity. Adv. Immunol. 78, 1–56 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Barber, G. N. Innate immune DNA sensing pathways: STING, AIMII and the regulation of interferon production and inflammatory responses. Curr. Opin. Immunol. 23, 10–20 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kawai, T. & Akira, S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int. Immunol. 21, 317–337 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ishikawa, H., Ma, Z. & Barber, G. N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461, 788–792 (2009). A description of STING as an important mediator in the host defence response against DNA-containing pathogens and in the adjuvant activity of DNA-based vaccines.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Takaoka, A. et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448, 501–505 (2007). The first identification of DAI as a new cytosolic DNA sensor that enhances the induction of type I IFN genes and other genes involved in innate immunity.

    Article  CAS  PubMed  Google Scholar 

  17. Kaiser, W. J., Upton, J. W. & Mocarski, E. S. Receptor-interacting protein homotypic interaction motif-dependent control of NF-κB activation via the DNA-dependent activator of IFN regulatory factors. J. Immunol. 181, 6427–6434 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Ishii, K. J. et al. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature 451, 725–729 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Chiu, Y. H., Macmillan, J. B. & Chen, Z. J. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138, 576–591 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Honda, K. & Taniguchi, T. IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nature Rev. Immunol. 6, 644–658 (2006).

    Article  CAS  Google Scholar 

  21. Platanias, L. C. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nature Rev. Immunol. 5, 375–386 (2005). An excellent review of the signalling mechanisms of type I IFNs, including the classical JAK–STAT pathways, as well as the MAPK and mTOR pathways.

    Article  CAS  Google Scholar 

  22. Fasler-Kan, E., Pansky, A., Wiederkehr, M., Battegay, M. & Heim, M. H. Interferon-α activates signal transducers and activators of transcription 5 and 6 in Daudi cells. Eur. J. Biochem. 254, 514–519 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Matikainen, S. et al. Interferon-α activates multiple STAT proteins and upregulates proliferation-associated IL-2R α, c-myc, and pim-1 genes in human T cells. Blood 93, 1980–1991 (1999).

    CAS  PubMed  Google Scholar 

  24. Aaronson, D. S. & Horvath, C. M. A road map for those who don't know JAK–STAT. Science 296, 1653–1655 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Platanias, L. C. & Fish, E. N. Signaling pathways activated by interferons. Exp. Hematol. 27, 1583–1592 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Sato, T., Selleri, C., Young, N. S. & Maciejewski, J. P. Inhibition of interferon regulatory factor-1 expression results in predominance of cell growth stimulatory effects of interferon-γ due to phosphorylation of Stat1 and Stat3. Blood 90, 4749–4758 (1997).

    CAS  PubMed  Google Scholar 

  27. Heinrich, P. C., Behrmann, I., Muller-Newen, G., Schaper, F. & Graeve, L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem. J. 334, 297–314 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baker, S. J., Rane, S. G. & Reddy, E. P. Hematopoietic cytokine receptor signaling. Oncogene 26, 6724–6737 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Regis, G., Pensa, S., Boselli, D., Novelli, F. & Poli, V. Ups and downs: the STAT1:STAT3 seesaw of interferon and gp130 receptor signalling. Semin. Cell Dev. Biol. 19, 351–359 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Stephanou, A., Brar, B. K., Knight, R. A. & Latchman, D. S. Opposing actions of STAT-1 and STAT-3 on the Bcl-2 and Bcl-x promoters. Cell Death Differ. 7, 329–330 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Azare, J. et al. Constitutively activated Stat3 induces tumorigenesis and enhances cell motility of prostate epithelial cells through integrin β6. Mol. Cell. Biol. 27, 4444–4453 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dechow, T. N. et al. Requirement of matrix metalloproteinase-9 for the transformation of human mammary epithelial cells by Stat3-C. Proc. Natl Acad. Sci. USA 101, 10602–10607 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dustin, M. L., Singer, K. H., Tuck, D. T. & Springer, T. A. Adhesion of T lymphoblasts to epidermal keratinocytes is regulated by interferon γ and is mediated by intercellular adhesion molecule 1 (ICAM-1). J. Exp. Med. 167, 1323–1340 (1988).

    Article  CAS  PubMed  Google Scholar 

  34. Yoshimura, A. Signal transduction of inflammatory cytokines and tumor development. Cancer Sci. 97, 439–447 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Brucet, M., Marques, L., Sebastian, C., Lloberas, J. & Celada, A. Regulation of murine Tap1 and Lmp2 genes in macrophages by interferon γ is mediated by STAT1 and IRF-1. Genes Immun. 5, 26–35 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Marques, L., Brucet, M., Lloberas, J. & Celada, A. STAT1 regulates lipopolysaccharide- and TNF-α-dependent expression of transporter associated with antigen processing 1 and low molecular mass polypeptide 2 genes in macrophages by distinct mechanisms. J. Immunol. 173, 1103–1110 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Ito, S. et al. Interleukin-10 inhibits expression of both interferon α- and interferon γ-induced genes by suppressing tyrosine phosphorylation of STAT1. Blood 93, 1456–1463 (1999).

    CAS  PubMed  Google Scholar 

  38. Yasukawa, H. et al. IL-6 induces an anti-inflammatory response in the absence of SOCS3 in macrophages. Nature Immunol. 4, 551–556 (2003).

    Article  CAS  Google Scholar 

  39. El Kasmi, K. C. et al. General nature of the STAT3-activated anti-inflammatory response. J. Immunol. 177, 7880–7888 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Tanabe, Y. et al. Cutting edge: role of STAT1, STAT3, and STAT5 in IFN-αβ responses in T lymphocytes. J. Immunol. 174, 609–613 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Qing, Y. & Stark, G. R. Alternative activation of STAT1 and STAT3 in response to interferon-γ. J. Biol. Chem. 279, 41679–41685 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Chang, E. Y., Guo, B., Doyle, S. E. & Cheng, G. Cutting edge: involvement of the type I IFN production and signaling pathway in lipopolysaccharide-induced IL-10 production. J. Immunol. 178, 6705–6709 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, X., Chen, M., Wandinger, K. P., Williams, G. & Dhib-Jalbut, S. IFN-β-1b inhibits IL-12 production in peripheral blood mononuclear cells in an IL-10-dependent mechanism: relevance to IFN-β-1b therapeutic effects in multiple sclerosis. J. Immunol. 165, 548–557 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Ziegler-Heitbrock, L. et al. IFN-α induces the human IL-10 gene by recruiting both IFN regulatory factor 1 and Stat3. J. Immunol. 171, 285–290 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Wang, H. et al. The role of glycogen synthase kinase 3 in regulating IFN-β-mediated IL-10 production. J. Immunol. 186, 675–684 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Uddin, S. et al. Activation of the p38 mitogen-activated protein kinase by type I interferons. J. Biol. Chem. 274, 30127–30131 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Uddin, S. et al. The Rac1/p38 mitogen-activated protein kinase pathway is required for interferon α-dependent transcriptional activation but not serine phosphorylation of Stat proteins. J. Biol. Chem. 275, 27634–27640 (2000).

    CAS  PubMed  Google Scholar 

  48. Li, Y. et al. Role of p38α Map kinase in type I interferon signaling. J. Biol. Chem. 279, 970–979 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Mayer, I. A. et al. The p38 MAPK pathway mediates the growth inhibitory effects of interferon-α in BCR-ABL-expressing cells. J. Biol. Chem. 276, 28570–28577 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Ishida, H. et al. Involvement of p38 signaling pathway in interferon-α-mediated antiviral activity toward hepatitis C virus. Biochem. Biophys. Res. Commun. 321, 722–727 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. David, M. et al. Requirement for MAP kinase (ERK2) activity in interferon α- and interferon β-stimulated gene expression through STAT proteins. Science 269, 1721–1723 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, F. et al. Disruption of Erk-dependent type I interferon induction breaks the myxoma virus species barrier. Nature Immunol. 5, 1266–1274 (2004).

    Article  CAS  Google Scholar 

  53. Uddin, S. et al. Interferon-α engages the insulin receptor substrate-1 to associate with the phosphatidylinositol 3′-kinase. J. Biol. Chem. 270, 15938–15941 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Kaur, S. et al. Role of the Akt pathway in mRNA translation of interferon-stimulated genes. Proc. Natl Acad. Sci. USA 105, 4808–4813 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kaur, S. et al. Dual regulatory roles of phosphatidylinositol 3-kinase in IFN signaling. J. Immunol. 181, 7316–7323 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Lekmine, F. et al. Activation of the p70 S6 kinase and phosphorylation of the 4E-BP1 repressor of mRNA translation by type I interferons. J. Biol. Chem. 278, 27772–27780 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Lekmine, F. et al. Interferon-γ engages the p70 S6 kinase to regulate phosphorylation of the 40S S6 ribosomal protein. Exp. Cell Res. 295, 173–182 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Matsumoto, A. et al. Interferon-α-induced mTOR activation is an anti-hepatitis C virus signal via the phosphatidylinositol 3-kinase–Akt-independent pathway. J. Gastroenterol. 44, 856–863 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nature Rev. Immunol. 9, 313–323 (2009).

    Article  CAS  Google Scholar 

  60. Katakura, K. et al. Toll-like receptor 9-induced type I IFN protects mice from experimental colitis. J. Clin. Invest. 115, 695–702 (2005). This study demonstrated that the protective effect of TLR9 signalling in colonic injury is mediated by type I IFNs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rachmilewitz, D. et al. Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology 126, 520–528 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Vijay-Kumar, M. et al. Activation of Toll-like receptor 3 protects against DSS-induced acute colitis. Inflamm. Bowel Dis. 13, 856–864 (2007).

    Article  PubMed  Google Scholar 

  63. McFarland, A. P. et al. Localized delivery of interferon-β by Lactobacillus exacerbates experimental colitis. PloS ONE 6, e16967 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Abe, K. et al. Conventional dendritic cells regulate the outcome of colonic inflammation independently of T cells. Proc. Natl Acad. Sci. USA 104, 17022–17027 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hall, J. A. et al. Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity 29, 637–649 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hofmann, C. et al. T cell-dependent protective effects of CpG motifs of bacterial DNA in experimental colitis are mediated by CD11c+ dendritic cells. Gut 59, 1347–1354 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Bleich, A. et al. CpG motifs of bacterial DNA exert protective effects in mouse models of IBD by antigen-independent tolerance induction. Gastroenterology 136, 278–287 (2009).

    Article  PubMed  Google Scholar 

  68. Bilsborough, J., George, T. C., Norment, A. & Viney, J. L. Mucosal CD8α+ DC, with a plasmacytoid phenotype, induce differentiation and support function of T cells with regulatory properties. Immunology 108, 481–492 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Levings, M. K. et al. IFN-α and IL-10 induce the differentiation of human type 1 T regulatory cells. J. Immunol. 166, 5530–5539 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Szabo, S. J. et al. Distinct effects of T-bet in TH1 lineage commitment and IFN-γ production in CD4 and CD8 T cells. Science 295, 338–342 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Cho, S. S. et al. Activation of STAT4 by IL-12 and IFN-α: evidence for the involvement of ligand-induced tyrosine and serine phosphorylation. J. Immunol. 157, 4781–4789 (1996).

    CAS  PubMed  Google Scholar 

  72. Rogge, L. et al. The role of Stat4 in species-specific regulation of Th cell development by type I IFNs. J. Immunol. 161, 6567–6574 (1998).

    CAS  PubMed  Google Scholar 

  73. Cousens, L. P. et al. Two roads diverged: interferon α/β- and interleukin 12-mediated pathways in promoting T cell interferon γ responses during viral infection. J. Exp. Med. 189, 1315–1328 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nguyen, K. B. et al. Critical role for STAT4 activation by type 1 interferons in the interferon-γ response to viral infection. Science 297, 2063–2066 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Berenson, L. S., Farrar, J. D., Murphy, T. L. & Murphy, K. M. Frontline: absence of functional STAT4 activation despite detectable tyrosine phosphorylation induced by murine IFN-α. Eur. J. Immunol. 34, 2365–2374 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Farrar, J. D., Smith, J. D., Murphy, T. L. & Murphy, K. M. Recruitment of Stat4 to the human interferon-α/β receptor requires activated Stat2. J. Biol. Chem. 275, 2693–2697 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Berenson, L. S., Gavrieli, M., Farrar, J. D., Murphy, T. L. & Murphy, K. M. Distinct characteristics of murine STAT4 activation in response to IL-12 and IFN-α. J. Immunol. 177, 5195–5203 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Huber, J. P. & Farrar, J. D. Regulation of effector and memory T-cell functions by type I interferon. Immunology 132, 466–474 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Matikainen, S. et al. IFN-α and IL-18 synergistically enhance IFN-γ production in human NK cells: differential regulation of Stat4 activation and IFN-γ gene expression by IFN-α and IL-12. Eur. J. Immunol. 31, 2236–2245 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Strengell, M., Julkunen, I. & Matikainen, S. IFN-α regulates IL-21 and IL-21R expression in human NK and T cells. J. Leukoc. Biol. 76, 416–422 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Harrington, L. E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nature Immunol. 6, 1123–1132 (2005).

    Article  CAS  Google Scholar 

  82. Moschen, A. R., Geiger, S., Krehan, I., Kaser, A. & Tilg, H. Interferon-α controls IL-17 expression in vitro and in vivo. Immunobiology 213, 779–787 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Qiu, H. et al. Type I IFNs enhance susceptibility to Chlamydia muridarum lung infection by enhancing apoptosis of local macrophages. J. Immunol. 181, 2092–2102 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Karaghiosoff, M. et al. Central role for type I interferons and Tyk2 in lipopolysaccharide-induced endotoxin shock. Nature Immunol. 4, 471–477 (2003).

    Article  CAS  Google Scholar 

  85. Vandenbark, A. A. et al. Interferon-β-1a treatment increases CD56bright natural killer cells and CD4+CD25+ Foxp3 expression in subjects with multiple sclerosis. J. Neuroimmunol. 215, 125–128 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Zhou, X. et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nature Immunol. 10, 1000–1007 (2009).

    Article  CAS  Google Scholar 

  87. Oldenhove, G. et al. Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity 31, 772–786 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dominguez-Villar, M., Baecher-Allan, C. M. & Hafler, D. A. Identification of T helper type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nature Med. 17, 673–675 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Guarda, G. et al. Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity 34, 213–223 (2011). An important study showing that type I IFN signalling inhibits NLRP1 and NLRP3 inflammasomes in a two-step process through STAT1 and IL-10.

    Article  CAS  PubMed  Google Scholar 

  91. Henry, T., Brotcke, A., Weiss, D. S., Thompson, L. J. & Monack, D. M. Type I interferon signaling is required for activation of the inflammasome during Francisella infection. J. Exp. Med. 204, 987–994 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fernandes-Alnemri, T. et al. The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nature Immunol. 11, 385–393 (2010).

    Article  CAS  Google Scholar 

  93. Fujita, T. et al. Induction of the transcription factor IRF-1 and interferon-β mRNAs by cytokines and activators of second-messenger pathways. Proc. Natl Acad. Sci. USA 86, 9936–9940 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rivieccio, M. A. et al. The cytokine IL-1β activates IFN response factor 3 in human fetal astrocytes in culture. J. Immunol. 174, 3719–3726 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Gonzalez-Navajas, J. M. et al. Interleukin 1 receptor signaling regulates DUBA expression and facilitates Toll-like receptor 9-driven antiinflammatory cytokine production. J. Exp. Med. 207, 2799–2807 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tseng, P. H. et al. Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines. Nature Immunol. 11, 70–75 (2010). An elegant study showing the different effects of K63- and K48-linked polyubiquitylation on the biological functions of TRAF3.

    Article  CAS  Google Scholar 

  97. Kayagaki, N. et al. DUBA: a deubiquitinase that regulates type I interferon production. Science 318, 1628–1632 (2007). The first report that DUBA binds to TRAF3 and selectively cleaves the K63-linked polyubiquitin chains, thereby dampening type I IFN production.

    Article  CAS  PubMed  Google Scholar 

  98. Lebeis, S. L., Powell, K. R., Merlin, D., Sherman, M. A. & Kalman, D. Interleukin-1 receptor signaling protects mice from lethal intestinal damage caused by the attaching and effacing pathogen Citrobacter rodentium. Infect. Immun. 77, 604–614 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Kojouharoff, G. et al. Neutralization of tumour necrosis factor (TNF) but not of IL-1 reduces inflammation in chronic dextran sulphate sodium-induced colitis in mice. Clin. Exp. Immunol. 107, 353–358 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Auerbuch, V., Brockstedt, D. G., Meyer-Morse, N., O'Riordan, M. & Portnoy, D. A. Mice lacking the type I interferon receptor are resistant to Listeria monocytogenes. J. Exp. Med. 200, 527–533 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Carrero, J. A., Calderon, B. & Unanue, E. R. Type I interferon sensitizes lymphocytes to apoptosis and reduces resistance to Listeria infection. J. Exp. Med. 200, 535–540 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Stanley, S. A., Johndrow, J. E., Manzanillo, P. & Cox, J. S. The type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J. Immunol. 178, 3143–3152 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Nagarajan, U. M. et al. Type I interferon signaling exacerbates Chlamydia muridarum genital infection in a murine model. Infect. Immun. 76, 4642–4648 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Henry, T. et al. Type I IFN signaling constrains IL-17A/F secretion by γδ T cells during bacterial infections. J. Immunol. 184, 3755–3767 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Carrero, J. A. & Unanue, E. R. Lymphocyte apoptosis as an immune subversion strategy of microbial pathogens. Trends Immunol. 27, 497–503 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Mancuso, G. et al. Type I IFN signaling is crucial for host resistance against different species of pathogenic bacteria. J. Immunol. 178, 3126–3133 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Coers, J., Vance, R. E., Fontana, M. F. & Dietrich, W. F. Restriction of Legionella pneumophila growth in macrophages requires the concerted action of cytokine and Naip5/Ipaf signalling pathways. Cell. Microbiol. 9, 2344–2357 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Burger, D. & Travis, S. Conventional medical management of inflammatory bowel disease. Gastroenterology 140, 1827–1837 (2011).

    Article  PubMed  Google Scholar 

  109. Musch, E., Andus, T., Malek, M., Chrissafidou, A. & Schulz, M. Successful treatment of steroid refractory active ulcerative colitis with natural interferon-β — an open long-term trial. Z. Gastroenterol. 45, 1235–1240 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Nikolaus, S. et al. Interferon β-1a in ulcerative colitis: a placebo controlled, randomised, dose escalating study. Gut 52, 1286–1290 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Madsen, S. M. et al. An open-labeled, randomized study comparing systemic interferon-α-2A and prednisolone enemas in the treatment of left-sided ulcerative colitis. Am. J. Gastroenterol. 96, 1807–1815 (2001).

    CAS  PubMed  Google Scholar 

  112. Pena Rossi, C. et al. Interferon β-1a for the maintenance of remission in patients with Crohn's disease: results of a phase II dose-finding study. BMC Gastroenterol. 9, 22 (2009).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  113. Pena-Rossi, C. et al. Clinical trial: a multicentre, randomized, double-blind, placebo-controlled, dose-finding, phase II study of subcutaneous interferon-β-1a in moderately active ulcerative colitis. Aliment. Pharmacol. Ther. 28, 758–767 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Gasche, C. et al. Prospective evaluation of interferon-α in treatment of chronic active Crohn's disease. Dig. Dis. Sci. 40, 800–804 (1995).

    Article  CAS  PubMed  Google Scholar 

  115. Musch, E. et al. Interferon-β-1a for the treatment of steroid-refractory ulcerative colitis: a randomized, double-blind, placebo-controlled trial. Clin. Gastroenterol. Hepatol. 3, 581–586 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Mitoro, A. et al. Exacerbation of ulcerative colitis during α-interferon therapy for chronic hepatitis C. Intern. Med. 32, 327–331 (1993).

    Article  CAS  PubMed  Google Scholar 

  117. Watanabe, T. et al. A case of exacerbation of ulcerative colitis induced by combination therapy with PEG-interferon α-2b and ribavirin. Gut 55, 1682–1683 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Schott, E. et al. Development of ulcerative colitis in a patient with multiple sclerosis following treatment with interferon β1a. World J. Gastroenterol. 13, 3638–3640 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Freeman, H. J., Chopra, A., Clandinin, M. T. & Thomson, A. B. Recent advances in celiac disease. World J. Gastroenterol. 17, 2259–2272 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  120. MacDonald, T. T. & Spencer, J. Evidence that activated mucosal T cells play a role in the pathogenesis of enteropathy in human small intestine. J. Exp. Med. 167, 1341–1349 (1988).

    Article  CAS  PubMed  Google Scholar 

  121. Neurath, M. F., Finotto, S. & Glimcher, L. H. The role of Th1/Th2 polarization in mucosal immunity. Nature Med. 8, 567–573 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Monteleone, G., Pender, S. L., Wathen, N. C. & MacDonald, T. T. Interferon-α drives T cell-mediated immunopathology in the intestine. Eur. J. Immunol. 31, 2247–2255 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Di Sabatino, A. et al. Evidence for the role of interferon-alfa production by dendritic cells in the Th1 response in celiac disease. Gastroenterology 133, 1175–1187 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Molberg, O. et al. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nature Med. 4, 713–717 (1998).

    Article  CAS  PubMed  Google Scholar 

  125. Molberg, O. et al. Gliadin specific, HLA DQ2-restricted T cells are commonly found in small intestinal biopsies from coeliac disease patients, but not from controls. Scand. J. Immunol. 46, 103–109 (1997).

    Article  CAS  PubMed  Google Scholar 

  126. Kagnoff, M. F. Celiac disease: pathogenesis of a model immunogenetic disease. J. Clin. Invest. 117, 41–49 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ting, J. P. & Trowsdale, J. Genetic control of MHC class II expression. Cell 109, S21–S33 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Cammarota, G., Cuoco, L., Cianci, R., Pandolfi, F. & Gasbarrini, G. Onset of coeliac disease during treatment with interferon for chronic hepatitis C. Lancet 356, 1494–1495 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Zheng, Y. et al. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445, 648–651 (2007).

    CAS  PubMed  Google Scholar 

  130. Nestle, F. O. et al. Plasmacytoid predendritic cells initiate psoriasis through interferon-α production. J. Exp. Med. 202, 135–143 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Dzionek, A. et al. BDCA-2, a novel plasmacytoid dendritic cell-specific type II C-type lectin, mediates antigen capture and is a potent inhibitor of interferon α/β induction. J. Exp. Med. 194, 1823–1834 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hua, J., Kirou, K., Lee, C. & Crow, M. K. Functional assay of type I interferon in systemic lupus erythematosus plasma and association with anti-RNA binding protein autoantibodies. Arthritis Rheum. 54, 1906–1916 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Kirou, K. A. et al. Activation of the interferon-α pathway identifies a subgroup of systemic lupus erythematosus patients with distinct serologic features and active disease. Arthritis Rheum. 52, 1491–1503 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Blanco, P., Palucka, A. K., Gill, M., Pascual, V. & Banchereau, J. Induction of dendritic cell differentiation by IFN-α in systemic lupus erythematosus. Science 294, 1540–1543 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Jego, G. et al. Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 19, 225–234 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Yao, Y. et al. Neutralization of interferon-α/β-inducible genes and downstream effect in a phase I trial of an anti-interferon-α monoclonal antibody in systemic lupus erythematosus. Arthritis Rheum. 60, 1785–1796 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Ann Marrie, R. & Rudick, R. A. Drug insight: interferon treatment in multiple sclerosis. Nature Clin. Pract. Neurol. 2, 34–44 (2006).

    Article  CAS  Google Scholar 

  138. Bendtzen, K. Critical review: assessment of interferon-β immunogenicity in multiple sclerosis. J. Interferon Cytokine Res. 30, 759–766 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. The IFNB Multiple Sclerosis Study Group. Interferon β-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 43, 655–661 (1993).

  140. Teige, I. et al. IFN-β gene deletion leads to augmented and chronic demyelinating experimental autoimmune encephalomyelitis. J. Immunol. 170, 4776–4784 (2003).

    Article  CAS  PubMed  Google Scholar 

  141. Brod, S. A. & Burns, D. K. Suppression of relapsing experimental autoimmune encephalomyelitis in the SJL/J mouse by oral administration of type I interferons. Neurology 44, 1144–1148 (1994).

    Article  CAS  PubMed  Google Scholar 

  142. Prinz, M. et al. Distinct and nonredundant in vivo functions of IFNAR on myeloid cells limit autoimmunity in the central nervous system. Immunity 28, 675–686 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Guo, B., Chang, E. Y. & Cheng, G. The type I IFN induction pathway constrains Th17-mediated autoimmune inflammation in mice. J. Clin. Invest. 118, 1680–1690 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Teige, I., Liu, Y. & Issazadeh-Navikas, S. IFN-β inhibits T cell activation capacity of central nervous system APCs. J. Immunol. 177, 3542–3553 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Rudick, R. A. et al. Interferon β induces interleukin-10 expression: relevance to multiple sclerosis. Ann. Neurol. 40, 618–627 (1996).

    Article  CAS  PubMed  Google Scholar 

  146. Ferrantini, M., Capone, I. & Belardelli, F. Interferon-α and cancer: mechanisms of action and new perspectives of clinical use. Biochimie 89, 884–893 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. Rizza, P., Moretti, F. & Belardelli, F. Recent advances on the immunomodulatory effects of IFN-α: implications for cancer immunotherapy and autoimmunity. Autoimmunity 43, 204–209 (2010).

    Article  CAS  PubMed  Google Scholar 

  148. Ferrantini, M. & Belardelli, F. Gene therapy of cancer with interferon: lessons from tumor models and perspectives for clinical applications. Semin. Cancer Biol. 10, 145–157 (2000).

    Article  CAS  PubMed  Google Scholar 

  149. Di Pucchio, T. et al. Immunization of stage IV melanoma patients with Melan-A/MART-1 and gp100 peptides plus IFN-α results in the activation of specific CD8+ T cells and monocyte/dendritic cell precursors. Cancer Res. 66, 4943–4951 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Lapenta, C. et al. IFN-α-conditioned dendritic cells are highly efficient in inducing cross-priming CD8+ T cells against exogenous viral antigens. Eur. J. Immunol. 36, 2046–2060 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. Lapenta, C. et al. Potent immune response against HIV-1 and protection from virus challenge in hu-PBL-SCID mice immunized with inactivated virus-pulsed dendritic cells generated in the presence of IFN-α. J. Exp. Med. 198, 361–367 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Santodonato, L. et al. Monocyte-derived dendritic cells generated after a short-term culture with IFN-α and granulocyte-macrophage colony-stimulating factor stimulate a potent Epstein-Barr virus-specific CD8+ T cell response. J. Immunol. 170, 5195–5202 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Herdman for his editorial assistance. This work was supported by US National Institutes of Health grants AI068685, AI077989, AI095623 and DK35108; grants from the Crohn's and Colitis Foundation of America; and grant CP10/00417 from Instituto de Salud Carlos III, Madrid, Spain.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José M. González-Navajas or Eyal Raz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Viral interference

The antagonistic or inhibitory effect induced by one virus or its components on the propagation of another virus.

IFN-stimulated genes

(ISGs). These genes contain promoters that are responsive to interferon (IFN) signalling, and they are responsible for the antiviral and immunomodulatory properties of IFNs. Over 400 such genes have been identified by microarray analyses. Some, such as RNA-activated protein kinase, ribonuclease L, MX1 (myxovirus resistance 1) and ISG15 (IFN-stimulated gene of 15 kDa), have well-documented antiviral activities, but the precise biological function of most of these genes is unknown.

Inflammasome

A cytosolic multiprotein complex that activates caspase 1 and regulates the release of IL-1β and IL-18 in response to exogenous pathogens and endogenous danger signals. This complex minimally consists of a danger-sensing initiator component and the effector component, which is mature caspase 1.

Coeliac disease

An immune-mediated enteropathy triggered by intolerance to dietary ingestion of glutamine- and proline-rich proteins, collectively known as gluten, which is present in wheat, barley, rye and other grains. This disease results in gastrointestinal symptoms such as diarrhoea, nutrient malabsorption and weight loss.

Multiple sclerosis

A chronic inflammatory disease of the central nervous system that causes the progressive destruction of the myelin sheaths around axons in any area of the brain, optic nerve and spinal cord. This results in slower nerve impulses.

Peyer's patches

Collections of lymphoid tissue that are located in the mucosa of the small intestine, with an outer epithelial layer that consists of specialized epithelial cells called M cells.

Systemic lupus erythematosus

(SLE). An autoimmune disease characterized by the presence of circulating immune complexes that contain antinuclear antibodies bound to self nucleic acids and other nuclear antigens.

Inflammatory bowel disease

(IBD). A chronic inflammatory condition that affects the intestinal tract. The proposed pathogenesis of IBD involves a complex model that includes abnormalities of innate immune function and their relationship with the commensal microbiota, inappropriate release of pro-inflammatory cytokines and other mediators, alterations of the intestinal epithelial barrier, and a cytokine imbalance that promotes the pro-inflammatory activity of adaptive immune cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Navajas, J., Lee, J., David, M. et al. Immunomodulatory functions of type I interferons. Nat Rev Immunol 12, 125–135 (2012). https://doi.org/10.1038/nri3133

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3133

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing