Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetics and pathogenesis of systemic lupus erythematosus and lupus nephritis

Key Points

  • Some genes implicated in systemic lupus erythematosus (SLE) and lupus nephritis might contribute to the pathology of disease by breaching immune tolerance and promoting autoantibody production

  • A subset of SLE and/or lupus nephritis genes might augment innate immune signalling and IFN-I production; other SLE genes might modulate the molecular pathways that lead to renal tissue damage

  • Genes that affect the accessibility and handling of apoptotic material and chromatin might also contribute to SLE and/or lupus nephritis

  • The presence of cognate antigens on the glomerular matrix, together with intrinsic molecular abnormalities in resident renal cells, could further accentuate disease progression in lupus nephritis

  • Differential involvement of the above-listed mechanisms in patients could potentially explain the wide spectrum of clinical phenotypes observed among individuals with SLE and lupus nephritis

Abstract

Systemic lupus erythematosus (SLE) is a multisystem autoimmune disorder that has a broad spectrum of effects on the majority of organs, including the kidneys. Approximately 40–70% of patients with SLE will develop lupus nephritis. Renal assault during SLE is initiated by genes that breach immune tolerance and promote autoantibody production. These genes might act in concert with other genetic factors that augment innate immune signalling and IFN-I production, which in turn can generate an influx of effector leucocytes, inflammatory mediators and autoantibodies into end organs, such as the kidneys. The presence of cognate antigens in the glomerular matrix, together with intrinsic molecular abnormalities in resident renal cells, might further accentuate disease progression. This Review discusses the genetic insights and molecular mechanisms for key pathogenic contributors in SLE and lupus nephritis. We have categorized the genes identified in human studies of SLE into one of four pathogenic events that lead to lupus nephritis. We selected these categories on the basis of the cell types in which these genes are expressed, and the emerging paradigms of SLE pathogenesis arising from murine models. Deciphering the molecular basis of SLE and/or lupus nephritis in each patient will help physicians to tailor specific therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stepwise evolution of systemic lupus erythematosus (SLE) as a function of genetic load.
Figure 2: Gene products associated with systemic lupus erythematosus (SLE) that might affect the adaptive immune system.
Figure 3: Gene products associated with systemic lupus erythematosus (SLE) that might affect innate immune signalling.
Figure 4: Gene products associated with systemic lupus erythematosus (SLE) that might affect intra-renal events leading to lupus nephritis.

Similar content being viewed by others

References

  1. Feldman, C. H. et al. Epidemiology and sociodemographics of systemic lupus erythematosus and lupus nephritis among US adults with Medicaid coverage, 2000–2004. Arthritis Rheum. 65, 753–763 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rahman, A. & Isenberg, D. A. Systemic lupus erythematosus. N. Engl. J. Med. 358, 929–939 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Schwartz, N., Goilav, B. & Putterman, C. The pathogenesis, diagnosis and treatment of lupus nephritis. Curr. Opin. Rheumatol. 26, 502–509 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tsokos, G. C. Systemic lupus erythematosus. N. Engl. J. Med. 365, 2110–2121 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Sang, A., Zheng, Y. Y. & Morel, L. Contributions of B cells to lupus pathogenesis. Mol. Immunol. 62, 329–338 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Davidson, A. & Aranow, C. Lupus nephritis: lessons from murine models. Nat. Rev. Rheumatol. 6, 13–20 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Reddy, V., Jayne, D., Close, D. & Isenberg, D. B-cell depletion in SLE: clinical and trial experience with rituximab and ocrelizumab and implications for study design. Arthritis Res. Ther. 15 (Suppl. 1), S2 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu, Y. & Anders, H. J. Lupus nephritis: from pathogenesis to targets for biologic treatment. Nephron Clin. Pract. (2014).

  9. Okamoto, A. et al. Kidney-infiltrating CD4+ T-cell clones promote nephritis in lupus-prone mice. Kidney Int. 82, 969–979 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, Z., Kyttaris, V. C. & Tsokos, G. C. The role of IL-23/IL-17 axis in lupus nephritis. J. Immunol. 183, 3160–3169 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Miyake, K., Akahoshi, M. & Nakashima, H. Th subset balance in lupus nephritis. J. Biomed. Biotechnol. 2011, 980286 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aringer, M., Gunther, C. & Lee-Kirsch, M. A. Innate immune processes in lupus erythematosus. Clin. Immunol. 147, 216–222 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Lech, M. & Anders, H. J. The pathogenesis of lupus nephritis. J. Am. Soc. Nephrol. 24, 1357–1366 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kiefer, K., Oropallo, M. A., Cancro, M. P. & Marshak-Rothstein, A. Role of type I interferons in the activation of autoreactive B cells. Immunol. Cell Biol. 90, 498–504 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bagavant, H. & Fu, S. M. Pathogenesis of kidney disease in systemic lupus erythematosus. Curr. Opin. Rheumatol. 21, 489–494 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nowling, T. K. & Gilkeson, G. S. Mechanisms of tissue injury in lupus nephritis. Arthritis Res. Ther. 13, 250 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Guerra, S. G., Vyse, T. J. & Cunninghame Graham, D. S. The genetics of lupus: a functional perspective. Arthritis Res. Ther. 14, 211 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Flesher, D. L., Sun, X., Behrens, T. W., Graham, R. R. & Criswell, L. A. Recent advances in the genetics of systemic lupus erythematosus. Expert Rev. Clin. Immunol. 6, 461–479 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Crispin, J. C., Hedrich, C. M. & Tsokos, G. C. Gene-function studies in systemic lupus erythematosus. Nat. Rev. Rheumatol. 9, 476–484 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Deng, Y. & Tsao, B. P. Genetic susceptibility to systemic lupus erythematosus in the genomic era. Nat. Rev. Rheumatol. 6, 683–692 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Graham, R. R. et al. Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat. Genet. 40, 1059–1061 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guo, Y., Orme, J. & Mohan, C. A genopedia of lupus genes - lessons from gene knockouts. Curr. Rheumatol. Rev. 9, 90–99 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Niewold, T. B. et al. IRF5 haplotypes demonstrate diverse serological associations which predict serum interferon alpha activity and explain the majority of the genetic association with systemic lupus erythematosus. Ann. Rheum. Dis. 71, 463–468 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Jensen, M. A. et al. Functional genetic polymorphisms in ILT3 are associated with decreased surface expression on dendritic cells and increased serum cytokines in lupus patients. Ann. Rheum. Dis. 72, 596–601 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Richez, C. et al. IFN regulatory factor 5 is required for disease development in the FcgammaRIIB−/−Yaa and FcgammaRIIB−/− mouse models of systemic lupus erythematosus. J. Immunol. 184, 796–806 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Qin, L. et al. Association of IRF5 gene polymorphisms and lupus nephritis in a Chinese population. Nephrology (Carlton) 15, 710–713 (2010).

    Article  CAS  Google Scholar 

  27. Morel, L. et al. Genetic reconstitution of systemic lupus erythematosus immunopathology with polycongenic murine strains. Proc. Natl Acad. Sci. USA 97, 6670–6675 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Mohan, C. et al. Genetic dissection of Sle pathogenesis: Sle3 on murine chromosome 7 impacts T cell activation, differentiation, and cell death. J. Immunol. 162, 6492–6502 (1999).

    CAS  PubMed  Google Scholar 

  29. Xie, S. & Mohan, C. Divide and conquer—the power of congenic strains. Clin. Immunol. 110, 109–111 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Henry, T. & Mohan, C. Systemic lupus erythematosus—recent clues from congenic strains. Arch. Immunol. Ther. Exp. (Warsz.) 53, 207–212 (2005).

    CAS  Google Scholar 

  31. Mohan, C. et al. Genetic dissection of lupus pathogenesis: a recipe for nephrophilic autoantibodies. J. Clin. Invest. 103, 1685–1695 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Morel, L. et al. Functional dissection of systemic lupus erythematosus using congenic mouse strains. J. Immunol. 158, 6019–6028 (1997).

    CAS  PubMed  Google Scholar 

  33. Vaughn, S. E. et al. Genetic susceptibility to lupus: the biological basis of genetic risk found in B cell signaling pathways. J. Leukoc. Biol. 92, 577–591 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Avalos, A. M., Meyer-Wentrup, F. & Ploegh, H. L. B-cell receptor signaling in lymphoid malignancies and autoimmunity. Adv. Immunol. 123, 1–49 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Shao, W. H. & Cohen, P. L. The role of tyrosine kinases in systemic lupus erythematosus and their potential as therapeutic targets. Expert Rev. Clin. Immunol. 10, 573–582 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Castillejo-Lopez, C. et al. Genetic and physical interaction of the B-cell systemic lupus erythematosus-associated genes BANK1 and BLK. Ann. Rheum. Dis. 71, 136–142 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Coughlin, J. J. et al. RasGRP1 and RasGRP3 regulate B cell proliferation by facilitating B cell receptor-Ras signaling. J. Immunol. 175, 7179–7184 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Shao, B. et al. Hyperglycaemia promotes human brain microvascular endothelial cell apoptosis via induction of protein kinase C-βI and prooxidant enzyme NADPH oxidase. Redox Biol. 2, 694–701 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu, L. et al. PKCβII acts downstream of chemoattractant receptors and mTORC2 to regulate cAMP production and myosin II activity in neutrophils. Mol. Biol. Cell 25, 1446–145 (2014).

    Article  Google Scholar 

  40. Zheng, Y. et al. Phosphorylation of RasGRP3 on threonine 133 provides a mechanistic link between PKC and Ras signaling systems in B cells. Blood 105, 3648–3654. (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Roberts, D. M. et al. A vascular gene trap screen defines RasGRP3 as an angiogenesis-regulated gene required for the endothelial response to phorbol esters. Mol. Cell Biol. 24, 10515–10528 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Oleksyn, D. et al. Protein kinase Cβ is required for lupus development in Sle mice. Arthritis Rheum. 65, 1022–1031 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Yu, C. C., Mamchak, A. A. & DeFranco, A. L. Signaling mutations and autoimmunity. Curr. Dir. Autoimmun. 6, 61–88 (2003).

    Article  PubMed  Google Scholar 

  44. Lamagna, C. et al. B cell-specific loss of Lyn kinase leads to autoimmunity. J. Immunol. 192, 919–928 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Hua, Z. et al. Requirement for MyD88 signaling in B cells and dendritic cells for germinal center anti-nuclear antibody production in Lyn-deficient mice. J. Immunol. 192, 875–885 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Yu, C. C., Yen, T. S., Lowell, C. A. & DeFranco, A. L. Lupus-like kidney disease in mice deficient in the Src family tyrosine kinases Lyn and Fyn. Curr. Biol. 11, 34–38 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Samuelson, E. M. et al. Blk haploinsufficiency impairs the development, but enhances the functional responses, of MZ B cells. Immunol. Cell Biol. 90, 620–629 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Samuelson, E. M. et al. Reduced B lymphoid kinase (Blk) expression enhances proinflammatory cytokine production and induces nephrosis in C57BL/6-lpr/lpr mice. PLoS ONE 9, e92054 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hata, A. et al. Functional analysis of Csk in signal transduction through the B-cell antigen receptor. Mol. Cell Biol. 14, 7306–7313 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Manjarrez-Orduno, N. et al. CSK regulatory polymorphism is associated with systemic lupus erythematosus and influences B-cell signaling and activation. Nat. Genet. 44, 1227–1230 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dai, X. et al. A disease-associated PTPN22 variant promotes systemic autoimmunity in murine models. J. Clin. Invest. 123, 2024–2036 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bayley, R. et al. The autoimmune-associated genetic variant PTPN22 R620W enhances neutrophil activation and function in patients with rheumatoid arthritis and healthy individuals. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2013-204796.

  53. Zhang, J. et al. The autoimmune disease-associated PTPN22 variant promotes calpain-mediated Lyp/Pep degradation associated with lymphocyte and dendritic cell hyperresponsiveness. Nat. Genet. 43, 902–907 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Brownlie, R. J. et al. Lack of the phosphatase PTPN22 increases adhesion of murine regulatory T cells to improve their immunosuppressive function. Sci. Signal. 5, ra87 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ivashkiv, L. B. PTPN22 in autoimmunity: different cell and different way. Immunity 25, 91–93 (2013).

    Article  CAS  Google Scholar 

  56. Leadbetter, E. A. et al. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603–607 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Mohan, C., Adams, S., Stanik, V. & Datta, S. K. Nucleosome: a major immunogen for pathogenic autoantibody-inducing T cells of lupus. J. Exp. Med. 177, 1367–1381 (1993).

    Article  CAS  PubMed  Google Scholar 

  58. Barcellos, L. F. et al. High-density SNP screening of the major histocompatibility complex in systemic lupus erythematosus demonstrates strong evidence for independent susceptibility regions. PLoS Genet. 5, e1000696 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Graham, R. R. et al. Specific combinations of HLA-DR2 and DR3 class II haplotypes contribute graded risk for disease susceptibility and autoantibodies in human SLE. Eur. J. Hum. Genet. 15, 823–830 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Fernando, M. M. et al. Defining the role of the MHC in autoimmunity: a review and pooled analysis. PLoS Genet. 4, e1000024 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sharpe, A. H. Mechanisms of costimulation. Immunol. Rev. 229, 5–11 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Farres, M. N., Al-Zifzaf, D. S., Aly, A. A. & Abd Raboh, N. M. OX40/OX40L in systemic lupus erythematosus: association with disease activity and lupus nephritis. Ann. Saudi Med. 31, 29–34 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yang, W. et al. Meta-analysis followed by replication identifies loci in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as associated with systemic lupus erythematosus in Asians. Am. J. Hum. Genet. 92, 41–51 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shah, K. et al. Dysregulated balance of Th17 and Th1 cells in systemic lupus erythematosus. Arthritis Res. Ther. 12, R53 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chang, A. et al. In situ B cell-mediated immune responses and tubulointerstitial inflammation in human lupus nephritis. J. Immunol. 186, 1849–1860 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Neubert, K. et al. The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat. Med. 14, 748–755 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Jacobi, A. M. et al. Correlation between circulating CD27high plasma cells and disease activity in patients with systemic lupus erythematosus. Arthritis Rheum. 48, 1332–1342 (2003).

    Article  PubMed  Google Scholar 

  68. Yang, W. et al. Genome-wide association study in Asian populations identifies variants in ETS1 and WDFY4 associated with systemic lupus erythematosus. PLoS Genet. 6, e1000841 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang, D. et al. Ets-1 deficiency leads to altered B cell differentiation, hyperresponsiveness to TLR9 and autoimmune disease. Int. Immunol. 17, 1179–1191 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Kim, S. J. et al. Tolerogenic function of Blimp-1 in dendritic cells. J. Exp. Med. 208, 2193–2199 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhou, Z. et al. Blimp-1 siRNA inhibits B cell differentiation and prevents the development of lupus in mice. Hum. Immunol. 74, 297–301 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Amarilyo, G., Lourenco, E. V., Shi, F. D. & La Cava, A. IL-17 promotes murine lupus. J. Immunol. 193, 540–543 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Schmidt, T. et al. Function of the Th17/interleukin-17A immune response in murine lupus nephritis. Arthritis Rheumatol. 67, 475–487 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Tan, W. et al. Association of PPP2CA polymorphisms with systemic lupus erythematosus susceptibility in multiple ethnic groups. Arthritis Rheum. 63, 2755–2763 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lashine, Y. A., Salah, S., Aboelenein, H. R. & Abdelaziz, A. I. Correcting the expression of miRNA-155 represses PP2Ac and enhances the release of IL-2 in PBMCs of juvenile SLE patients. Lupus 24, 240–247 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Crispin, J. C. et al. Cutting edge: protein phosphatase 2A confers susceptibility to autoimmune disease through an IL-17-dependent mechanism. J. Immunol. 188, 3567–3571 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Apostolidis, S. A. et al. Protein phosphatase 2A enables expression of interleukin 17 (IL-17) through chromatin remodeling. J. Biol. Chem. 288, 26775–26784 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Richman, I. B. et al. European genetic ancestry is associated with a decreased risk of lupus nephritis. Arthritis Rheum. 64, 3374–3382 (2012).

    Article  PubMed  Google Scholar 

  79. Taylor, K. E. et al. Risk alleles for systemic lupus erythematosus in a large case-control collection and associations with clinical subphenotypes. PLoS Genet. 7, e1001311 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Taylor, K. E. et al. Specificity of the STAT4 genetic association for severe disease manifestations of systemic lupus erythematosus. PLoS Genet. 4, e1000084 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jacob, C. O. et al. Pivotal role of Stat4 and Stat6 in the pathogenesis of the lupus-like disease in the New Zealand mixed 2328 mice. J. Immunol. 171, 1564–1571 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Rajabi, P., Alaee, M., Mousavizadeh, K. & Samadikuchaksaraei, A. Altered expression of TNFSF4 and TRAF2 mRNAs in peripheral blood mononuclear cells in patients with systemic lupus erythematosus: association with atherosclerotic symptoms and lupus nephritis. Inflamm. Res. 61, 1347–1354 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Zhou, X. J. et al. A replication study from Chinese supports association between lupus-risk allele in TNFSF4 and renal disorder. Biomed. Res. Int. 2013, 597921 (2013).

    PubMed  PubMed Central  Google Scholar 

  84. Sanchez, E. et al. Phenotypic associations of genetic susceptibility loci in systemic lupus erythematosus. Ann. Rheum. Dis. 70, 1752–1757 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Obermoser, G. & Pascual, V. The interferon-alpha signature of systemic lupus erythematosus. Lupus 19, 1012–1019 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fairhurst, A. M. et al. Type I interferons produced by resident renal cells may promote end-organ disease in autoantibody-mediated glomerulonephritis. J. Immunol. 183, 6831–6838 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Triantafyllopoulou, A. et al. Proliferative lesions and metalloproteinase activity in murine lupus nephritis mediated by type I interferons and macrophages. Proc. Natl Acad. Sci. USA 107, 3012–3017 (2010).

    Article  PubMed  Google Scholar 

  88. He, C. F. et al. TNIP1, SLC15A4, ETS1, RasGRP3 and IKZF1 are associated with clinical features of systemic lupus erythematosus in a Chinese Han population. Lupus 19, 1181–1186 (2010).

    Article  PubMed  Google Scholar 

  89. Frucht, D. M. et al. STAT4 is expressed in activated peripheral blood monocytes, dendritic cells, and macrophages at sites of Th1-mediated inflammation. J. Immunol. 164, 4659–4664 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Kaplan, M. H. STAT4: a critical regulator of inflammation in vivo. Immunol. Res. 31, 231–242 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Iwakura, Y. & Ishigame, H. The IL-23/IL-17 axis in inflammation. J. Clin. Invest. 116, 1218–1222 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ivashkiv, L. B. & Donlin, L. T. Regulation of type I interferon responses. Nat. Rev. Immunol. 14, 36–49 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Elkon, K. B. & Stone, V. V. Type I interferon and systemic lupus erythematosus. J. Interferon Cytokine Res. 31, 803–812 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dang, J. et al. Gene-gene interactions of IRF5, STAT4, IKZF1 and ETS1 in systemic lupus erythematosus. Tissue Antigens 83, 401–408 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Karassa, F. B. et al. The Fc gamma RIIIA-F158 allele is a risk factor for the development of lupus nephritis: a meta-analysis. Kidney Int. 63, 1475–1482 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Brown, E. E., Edberg, J. C. & Kimberly, R. P. Fc receptor genes and the systemic lupus erythematosus diathesis. Autoimmunity 40, 567–581 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Floto, R. A. et al. Loss of function of a lupus-associated FcgammaRIIb polymorphism through exclusion from lipid rafts. Nat. Med. 11, 1056–1058 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Breunis, W. B. et al. Copy number variation at the FCGR locus includes FCGR3A, FCGRXXXXX2C and FCGR3B but not FCGR2A and FCGR2B. Hum. Mutat. 30, E640–E650 (2009).

    Article  PubMed  Google Scholar 

  99. Fanciulli, M. et al. FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity. Nat. Genet. 39, 721–723 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Morris, D. L. et al. Evidence for both copy number and allelic (NA1/NA2) risk at the FCGR3B locus in systemic lupus erythematosus. Eur. J. Hum. Genet. 18, 1027–1031 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Clynes, R., Dumitru, C. & Ravetch, J. V. Uncoupling of immune complex formation and kidney damage in autoimmune glomerulonephritis. Science 279, 1052–1054 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Bergtold, A. et al. FcR-bearing myeloid cells are responsible for triggering murine lupus nephritis. J. Immunol. 177, 7287–7295 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Sánchez-Mejorada, G. & Rosales, C. Signal transduction by immunoglobulin Fc receptors. J. Leukoc. Biol. 63, 521–533 (1998).

    Article  PubMed  Google Scholar 

  104. Celhar, T., Magalhães, R. & Fairhurst, A. M. TLR7 and TLR9 in SLE: when sensing self goes wrong. Immunol. Res. 53, 58–77 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Shrivastav, M. & Niewold, T. B. Nucleic acid sensors and type I interferon production in systemic lupus erythematosus. Front. Immunol. 4, 319 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhou, X. J. et al. Association of TLR9 gene polymorphisms with lupus nephritis in a Chinese Han population. Clin. Exp. Rheumatol. 28, 397–400 (2010).

    PubMed  Google Scholar 

  107. Jacob, C. O. et al. Identification of IRAK1 as a risk gene with critical role in the pathogenesis of systemic lupus erythematosus. Proc. Natl Acad. Sci. USA 106, 6256–6261 (2009).

    Article  PubMed  Google Scholar 

  108. Barrat, F. J. et al. Treatment of lupus-prone mice with a dual inhibitor of TLR7 and TLR9 leads to reduction of autoantibody production and amelioration of disease symptoms. Eur. J. Immunol. 37, 3582–3586 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Christensen, S. R. et al. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25, 417–428 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Verstrepen, L. et al. ABINs: A20 binding inhibitors of NF-kappa B and apoptosis signaling. Biochem. Pharmacol. 78, 105–114 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Lewis, M. J. et al. BE2L3 polymorphism amplifies NF-κB activation and promotes plasma cell development, linking linear ubiquitination to multiple autoimmune diseases. Am. J. Hum. Genet. 96, 221–234 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zuo, X. B. et al. Variants in TNFSF4, TNFAIP3, TNIP1, BLK, SLC15A4 and UBE2L3 interact to confer risk of systemic lupus erythematosus in Chinese population. Rheumatol. Int. 34, 459–464 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Hovelmeyer, N. et al. A20 deficiency in B cells enhances B-cell proliferation and results in the development of autoantibodies. Eur. J. Immunol. 41, 595–601 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Caster, D. J. et al. ABIN1 dysfunction as a genetic basis for lupus nephritis. J. Am. Soc. Nephrol. 24, 1743–1754 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bates, J. S. et al. Meta-analysis and imputation identifies a 109 kb risk haplotype spanning TNFAIP3 associated with lupus nephritis and hematologic manifestations. Genes Immun. 10, 470–477 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhou, Y. et al. Multiple lupus-associated ITGAM variants alter Mac-1 functions on neutrophils. Arthritis Rheum. 65, 2907–2916 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Fagerholm, S. C. et al. The CD11b-integrin (ITGAM) and systemic lupus erythematosus. Lupus 22, 657–663 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Ross, G. D. & Ve˘tvicka, V. CR3 (CD11b, CD18): a phagocyte and NK cell membrane receptor with multiple ligand specificities and functions. Clin. Exp. Immunol. 92, 181–184 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kim-Howard, X. et al. ITGAM coding variant (rs1143679) influences the risk of renal disease, discoid rash and immunological manifestations in patients with systemic lupus erythematosus with European ancestry. Ann. Rheum. Dis. 69, 1329–1332 (2010).

    Article  PubMed  Google Scholar 

  120. Yang, W. et al. ITGAM is associated with disease susceptibility and renal nephritis of systemic lupus erythematosus in Hong Kong Chinese and Thai. Hum. Mol. Genet. 18, 2063–2070 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Orme, J. & Mohan, C. Macrophages and neutrophils in SLE-An online molecular catalog. Autoimmun. Rev. 11, 365–372 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Crispín, J. C., Hedrich, C. M. & Tsokos, G. C. Gene-function studies in systemic lupus erythematosus. Nat. Rev. Rheumatol. 9, 476–484 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Seredkina, N. et al. Lupus nephritis: enigmas, conflicting models and an emerging concept. Mol. Med. 19, 161–169 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rekvig, O. P. & Van der Vlag, J. The pathogenesis and diagnosis of systemic lupus erythematosus: still not resolved. Semin. Immunopathol. 36, 301–311 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Zhou, T. B. et al. Relationship between angiotensin-converting enzyme insertion/deletion gene polymorphism and systemic lupus erythematosus/lupus nephritis: a systematic review and metaanalysis. J. Rheumatol. 39, 686–693 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Chung, S. A. et al. Differential genetic associations for systemic lupus erythematosus based on anti-dsDNA autoantibody production. PLoS Genet. 7, e1001323 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Liu, K. et al. Kallikrein genes are associated with lupus and glomerular basement membrane-specific antibody-induced nephritis in mice and humans. J. Clin. Invest. 119, 911–923 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ciferska, H. et al. Expression of nucleic acid binding Toll-like receptors in control, lupus and transplanted kidneys--a preliminary pilot study. Lupus 17, 580–585 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Papadimitraki, E. D. et al. Glomerular expression of toll-like receptor-9 in lupus nephritis but not in normal kidneys: implications for the amplification of the inflammatory response. Lupus 18, 831–835 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Patole, P. S. et al. Expression and regulation of Toll-like receptors in lupus-like immune complex glomerulonephritis of MRL-Fas(lpr) mice. Nephrol. Dial. Transplant. 21, 3062–3073 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Ka, S. M. et al. Mesangial cells of lupus-prone mice are sensitive to chemokine production. Arthritis Res. Ther. 9, R67 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Liu, S. et al. TRAF6 knockdown promotes survival and inhibits inflammatory response to lipopolysaccharides in rat primary renal proximal tubule cells. Acta Physiol. (Oxf.) 199, 339–346 (2010).

    CAS  Google Scholar 

  133. Benigni, A. et al. Involvement of renal tubular Toll-like receptor 9 in the development of tubulointerstitial injury in systemic lupus. Arthritis Rheum. 56, 1569–1578 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Machida, H. et al. Expression of Toll-like receptor 9 in renal podocytes in childhood-onset active and inactive lupus nephritis. Nephrol. Dial. Transplant. 25, 2530–2537 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Frieri, M. et al. Toll-like receptor 9 and vascular endothelial growth factor levels in human kidneys from lupus nephritis patients. J. Nephrol. 25, 1041–1046 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Lichtnekert, J. et al. Trif is not required for immune complex glomerulonephritis: dying cells activate mesangial cells via Tlr2/Myd88 rather than Tlr3/Trif. Am. J. Physiol. Renal Physiol. 296, F867–F874 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Kunter, U. et al. Combined expression of A1 and A20 achieves optimal protection of renal proximal tubular epithelial cells. Kidney Int. 68, 1520–1532 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Lutz, J. et al. The A20 gene protects kidneys from ischaemia/reperfusion injury by suppressing pro-inflammatory activation. J. Mol. Med. (Berl.) 86, 1329–1339 (2008).

    Article  CAS  Google Scholar 

  139. da Silva, C. G. et al. Hepatocyte growth factor preferentially activates the anti-inflammatory arm of NF-κB signaling to induce A20 and protect renal proximal tubular epithelial cells from inflammation. J. Cell Physiol. 227, 1382–1390 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Reiser, J. et al. Induction of B7–1 in podocytes is associated with nephrotic syndrome. J. Clin. Invest. 113, 1390–1397 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Shimada, M. et al. Toll-like receptor 3 ligands induce CD80 expression in human podocytes via an NF-κB-dependent pathway. Nephrol. Dial. Transplant. 27, 81–89 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Ishimoto, T. et al. Toll-like receptor 3 ligand, polyIC, induces proteinuria and glomerular CD80, and increases urinary CD80 in mice. Nephrol. Dial. Transplant. 28, 1439–1446 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Yu, C. C. et al. Abatacept in B7-1-positive proteinuric kidney disease. N. Engl. J. Med. 369, 2416–2423 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ichinose, K. et al. Cutting edge: calcium/calmodulin-dependent protein kinase type IV is essential for mesangial cell proliferation and lupus nephritis. J. Immunol. 187, 5500–5504 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Fu, S. M., Deshmukh, U. S. & Gaskin, F. Pathogenesis of systemic lupus erythematosus revisited 2011: end organ resistance to damage, autoantibody initiation and diversification, and HLA-DR. J. Autoimmun. 37, 104–112 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ge, Y. et al. Cgnz1 allele confers kidney resistance to damage preventing progression of immune complex-mediated acute lupus glomerulonephritis. J. Exp. Med. 210, 2387–2401 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Dai, C. et al. Genetics of systemic lupus erythematosus: immune responses and end organ resistance to damage. Curr. Opin. Immunol. 31, 87–96 (2014).

    Article  CAS  PubMed  Google Scholar 

  148. Guo, Y., Orme, J. & Mohan, C. A genopedia of lupus genes - lessons from gene knockouts. Curr. Rheumatol. Rev. 9, 90–99 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Shao, W. H. & Cohen, P. L. Disturbances of apoptotic cell clearance in systemic lupus erythematosus. Arthritis Res. Ther. 13, 202 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Pieterse, E. & Van der Vlag, J. Breaking immunological tolerance in systemic lupus erythematosus. Front. Immunol. 5, 164 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Hartleben, B. et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J. Clin. Invest. 120, 1084–1096 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Yaniv, G. et al. A volcanic explosion of autoantibodies in systemic lupus erythematosus: a diversity of 180 different antibodies found in SLE patients. Autoimmun. Rev. 14, 75–79 (2015).

    Article  CAS  PubMed  Google Scholar 

  153. Mehra, S. & Fritzler, M. J. The spectrum of anti-chromatin/nucleosome autoantibodies: independent and interdependent biomarkers of disease. J. Immunol. Res. 2014, 368274 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Gatto, M. et al. Emerging and critical issues in the pathogenesis of lupus. Autoimmun. Rev. 12, 523–536 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. Rekvig, O. P. & Van der Vlag, J. The pathogenesis and diagnosis of systemic lupus erythematosus: still not resolved. Semin. Immunopathol. 36, 301–311 (2014).

    Article  CAS  PubMed  Google Scholar 

  156. Munoz, L. E. et al. The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat. Rev. Rheumatol. 6, 280–289 (2010).

    Article  PubMed  Google Scholar 

  157. Cohen, P. L. et al. Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. J. Exp. Med. 196, 135–140 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Rodriguez-Manzanet, R. et al. T and B cell hyperactivity and autoimmunity associated with niche-specific defects in apoptotic body clearance in TIM-4-deficient mice. Proc. Natl Acad. Sci. USA 107, 8706–8711 (2010).

    Article  CAS  PubMed  Google Scholar 

  159. Knight, J. S. & Kaplan, M. J. Lupus neutrophils: 'NET' gain in understanding lupus pathogenesis. Curr. Opin. Rheumatol. 24, 441–450 (2012).

    Article  CAS  PubMed  Google Scholar 

  160. Magna, M. & Pisetsky, D. S. The role of HMGB1 in the pathogenesis of inflammatory and autoimmune diseases. Mol. Med. 20, 138–146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Cunninghame Graham, D. S., Akil, M. & Vyse, T. J. Association of polymorphisms across the tyrosine kinase gene, TYK2 in UK SLE families. Rheumatology (Oxford) 46, 927–930 (2007).

    Article  CAS  Google Scholar 

  162. Mevorach, D. Clearance of dying cells and systemic lupus erythematosus: the role of C1q and the complement system. Apoptosis 15, 1114–1123 (2010).

    Article  CAS  PubMed  Google Scholar 

  163. Leffler, J., Bengtsson, A. A. & Blom, A. M. The complement system in systemic lupus erythematosus: an update. Ann. Rheum. Dis. 73, 1601–1606 (2014).

    Article  CAS  PubMed  Google Scholar 

  164. Saxena, R., Mahajan, T. & Mohan, C. Lupus nephritis: current update. Arthritis Res. Ther. 13, 240 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Liu, Y. & Anders, H. J. Lupus nephritis: from pathogenesis to targets for biologic treatment. Nephron Clin. Pract. 128, 224–231 (2014).

    Article  CAS  PubMed  Google Scholar 

  166. Liu, Z. & Davidson, A. Taming lupus-a new understanding of pathogenesis is leading to clinical advances. Nat. Med. 18, 871–882 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Putterman, C. New approaches to the renal pathogenicity of anti-DNA antibodies in systemic lupus erythematosus. Autoimmun. Rev. 2, 7–11 (2004).

    Article  CAS  Google Scholar 

  168. Kozyrev, S. V. et al. Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat. Genet. 40, 211–216 (2008).

    Article  CAS  PubMed  Google Scholar 

  169. Yang, W. et al. Genome-wide association study in Asian populations identifies variants in ETS1 and WDFY4 associated with systemic lupus erythematosus. PLoS Genet. 6, e1000841 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Sanchez, E. et al. Identification of novel genetic susceptibility loci in African American lupus patients in a candidate gene association study. Arthritis Rheum. 63, 3493–3501 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Hom, G. et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N. Engl. J. Med. 358, 900–909 (2008).

    Article  CAS  PubMed  Google Scholar 

  172. Han, J. W. et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat. Genet. 41, 1234–1237 (2009).

    Article  CAS  PubMed  Google Scholar 

  173. Guthridge, J. M. et al. Two functional lupus-associated BLK promoter variants control cell-type- and developmental-stage-specific transcription. Am. J. Hum. Genet. 94, 586–598 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Okada, Y. et al. A genome-wide association study identified AFF1 as a susceptibility locus for systemic lupus eyrthematosus in Japanese. PLoS Genet. 8, e1002455 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lee, H. S. et al. Ethnic specificity of lupus-associated loci identified in a genome-wide association study in Korean women. Ann. Rheum. Dis. 73, 1240–1245 (2014).

    Article  CAS  PubMed  Google Scholar 

  176. Liu, P. et al. IL-10 gene polymorphisms and susceptibility to systemic lupus erythematosus: a meta-analysis. PLoS One 8, e69547 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Gateva, V. et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat. Genet. 41, 1228–1233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Lu, R. et al. Genetic associations of LYN with systemic lupus erythematosus. Genes Immun. 10, 397–403 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Zhou, X. J. et al. Genetic association of PRDM1-ATG5 intergenic region and autophagy with systemic lupus erythematosus in a Chinese population. Ann. Rheum. Dis. 70, 1330–1337 (2011).

    Article  CAS  PubMed  Google Scholar 

  180. Sheng, Y. J. et al. Follow-up study identifies two novel susceptibility loci PRKCB and 8p11.21 for systemic lupus erythematosus. Rheumatology (Oxford) 50, 682–688 (2011).

    Article  CAS  Google Scholar 

  181. Vang, T. et al. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat. Genet. 37, 1317–1319 (2005).

    Article  CAS  PubMed  Google Scholar 

  182. Arechiga, A. F. et al. Cutting edge: the PTPN22 allelic variant associated with autoimmunity impairs B cell signaling. J. Immunol. 182, 3343–3347 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Menard, L. et al. The PTPN22 allele encoding an R620W variant interferes with the removal of developing autoreactive B cells in humans. J. Clin. Invest. 121, 3635–44 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Wang, C. et al. Genes identified in Asian SLE GWASs are also associated with SLE in Caucasian populations. Eur. J. Hum. Genet. 21, 994–999 (2013).

    Article  CAS  PubMed  Google Scholar 

  185. Namjou, B. et al. High-density genotyping of STAT4 reveals multiple haplotypic associations with systemic lupus erythematosus in different racial groups. Arthritis Rheum. 60, 1085–1095 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Harley, J. B. et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat. Genet. 40, 204–210 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Manku, H. et al. Trans-ancestral studies fine map the SLE-susceptibility locus TNFSF4. PLoS Genet. 9, e1003554 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Molineros, J. E. et al. Admixture mapping in lupus identifies multiple functional variants within IFIH1 associated with apoptosis, inflammation, and autoantibody production. PLoS Genet. 9, e1003222 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Cunninghame Graham, D. S. et al. Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with systemic lupus erythematosus. PLoS Genet. 7, e1002341 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Westra, H. J. et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 45, 1238–1243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Kaufman, K. M. et al. Fine mapping of Xq28: both MECP2 and IRAK1 contribute to risk for systemic lupus erythematosus in multiple ancestral groups. Ann. Rheum. Dis. 72, 437–444 (2013).

    Article  CAS  PubMed  Google Scholar 

  192. Koelsch, K. A. et al. Functional characterization of the MECP2/IRAK1 lupus risk haplotype in human T cells and a human MECP2 transgenic mouse. J. Autoimmun. 41, 168–174 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Graham, R. R. et al. A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat. Genet. 38, 550–555 (2006).

    Article  CAS  PubMed  Google Scholar 

  194. Graham, R. R. et al. Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc. Natl Acad. Sci. USA 104, 6758–6763 (2007).

    Article  CAS  PubMed  Google Scholar 

  195. Sigurdsson, S. et al. Comprehensive evaluation of the genetic variants of interferon regulatory factor 5 (IRF5) reveals a novel 5 bp length polymorphism as strong risk factor for systemic lupus erythematosus. Hum. Mol. Genet. 17, 872–881 (2008).

    Article  CAS  PubMed  Google Scholar 

  196. Lofgren, S. E. et al. Promoter insertion/deletion in the IRF5 gene is highly associated with susceptibility to systemic lupus erythematosus in distinct populations, but exerts a modest effect on gene expression in peripheral blood mononuclear cells. J. Rheumatol. 37, 574–578 (2010).

    Article  CAS  PubMed  Google Scholar 

  197. Fu, Q. et al. Association of a functional IRF7 variant with systemic lupus erythematosus. Arthritis Rheum. 63, 749–754 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Salloum, R. et al. Genetic variation at the IRF7/PHRF1 locus is associated with autoantibody profile and serum interferon-alpha activity in lupus patients. Arthritis Rheum. 62, 553–561 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Baccala, R. et al. Essential requirement for IRF8 and SLC15A4 implicates plasmacytoid dendritic cells in the pathogenesis of lupus. Proc. Natl Acad. Sci. USA 110, 2940–2945 (2013).

    Article  PubMed  Google Scholar 

  200. Lessard, C. J. et al. Identification of IRF8, TMEM39A, and IKZF3-ZPBP2 as susceptibility loci for systemic lupus erythematosus in a large-scale multiracial replication study. Am. J. Hum. Genet. 90, 648–660 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Shen, N. et al. Sex-specific association of X-linked Toll-like receptor 7 (TLR7) with male systemic lupus erythematosus. Proc. Natl Acad. Sci. USA 107, 15838–15843 (2010).

    Article  PubMed  Google Scholar 

  202. Deng, Y. et al. MicroRNA-3148 modulates allelic expression of toll-like receptor 7 variant associated with systemic lupus erythematosus. PLoS Genet. 9, e1003336 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Zhang, J. et al. Association study of TLR-9 polymorphisms and systemic lupus erythematosus in northern Chinese Han population. Gene 533, 385–388 (2014).

    Article  CAS  PubMed  Google Scholar 

  204. Wang, S. et al. An enhancer element harboring variants associated with systemic lupus erythematosus engages the TNFAIP3 promoter to influence A20 expression. PLoS Genet. 9, e1003750 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Agik, S. et al. The autoimmune disease risk allele of UBE2L3 in African American patients with systemic lupus erythematosus: a recessive effect upon subphenotypes. J. Rheumatol. 39, 73–8 (2012).

    Article  CAS  PubMed  Google Scholar 

  206. Wang, S. et al. A functional haplotype of UBE2L3 confers risk for systemic lupus erythematosus. Genes Immun. 13, 380–387 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Shin, H. D. et al. Common DNase I polymorphism associated with autoantibody production among systemic lupus erythematosus patients. Hum. Mol. Genet. 13, 2343–2350 (2004).

    Article  CAS  PubMed  Google Scholar 

  208. Han, S. et al. Evaluation of imputation-based association in and around the integrin-alpha-M (ITGAM) gene and replication of robust association between a non-synonymous functional variant within ITGAM and systemic lupus erythematosus (SLE). Hum. Mol. Genet. 18, 1171–1180 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Rhodes, B. et al. The rs1143679 (R77H) lupus associated variant of ITGAM (CD11b) impairs complement receptor 3 mediated functions in human monocytes. Ann. Rheum. Dis. 71, 2028–2034 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Fossati-Jimack, L. et al. Phagocytosis is the main CR3-mediated function affected by the lupus-associated variant of CD11b in human myeloid cells. PLoS One 8, e57082 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Namjou, B. et al. Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort. Genes Immun. 12, 270–279 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the editorial assistance of Simanta Pathak, University of Houston, USA. Relevant studies in Dr. Putterman's laboratory were supported by grants from the NIH, DK090319 and AR048692. Dr. Putterman is currently a Weston Visiting Professor at the Weizmann Institute.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched the data for the article, provided substantial contributions to discussions of its content, wrote the article, and undertook review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Chandra Mohan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, C., Putterman, C. Genetics and pathogenesis of systemic lupus erythematosus and lupus nephritis. Nat Rev Nephrol 11, 329–341 (2015). https://doi.org/10.1038/nrneph.2015.33

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2015.33

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing