Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuropsychiatric systemic lupus erythematosus: pathogenesis and biomarkers

Key Points

  • Neuropsychiatric symptoms can be an important complication of systemic lupus erythematosus (SLE); among patients with neuropsychiatric SLE (NPSLE), neuropsychiatric manifestations contribute considerably to morbidity and mortality

  • Clinical manifestations of NPSLE are wide-ranging, and can involve the CNS and PNS; thus, no single diagnostic test for NPSLE exists, and diagnosis remains mainly an exercise of exclusion

  • Both the profile and severity of neuropsychiatric impairment in patients with NPSLE fluctuate over time, independently of disease activity

  • Disruption of blood–brain barrier integrity, which enables diffusion of small molecules and cytokines into the cerebrospinal fluid, is considered a pivotal component of NPSLE development

  • Consensus case-definition criteria for NPSLE-associated central and peripheral neurological syndromes represent an important development that has improved the diagnosis and management of NPSLE; however, some manifestations are still misdiagnosed

  • The rationale for understanding the pathophysiology of NPSLE is the potential to develop biomarkers and selective therapies targeting the identified pathogenetic processes, thereby ultimately improving the management of the disease

Abstract

Systemic lupus erythematosus (SLE) is a complex clinical syndrome, elements of which remain poorly understood. Although recognized over 140 years ago when Kaposi recorded the systemic nature and manifestations of the disease, CNS involvement represents one of the least understood aspects of SLE. This knowledge gap remains despite the fact that up to 75% of adults and children with SLE will, at some point over the course of the disease and to different extents, experience the various disabling effects of neuropsychiatric SLE (NPSLE). Indeed, after decades of research, our understanding of the underlying pathophysiology of NPSLE, in particular, remains limited. Numerous factors contribute to the immune dysfunction that occurs in SLE, including genetic, environmental and hormonal influences, and the contributory or predisposing components that lead to neurological tropism of disease in some patients have not been clearly demonstrated. Features of NPSLE pathogenesis that might be directly linked to clinical manifestations have been identified; however, the complexity and variety of NPSLE symptoms and the clinical overlap with other psychiatric disorders continue to make accurate diagnosis difficult and time-consuming. Thus, efforts to define biomarkers of NPSLE are needed to improve prediction of disease outcomes and guide treatment. In this article, we review the manifestation and pathogenesis of NPSLE, focusing on the features that might aid identification of potential biomarkers.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SLE-associated neurological features.
Figure 2: Rational approach to evaluation and differential diagnosis of NPSLE.
Figure 3: Potential pathogenic mechanisms in NPSLE.
Figure 4: Immune response to molecules related to cell stress and repair in NPSLE.

Similar content being viewed by others

References

  1. Esdaile, J. M. Lupus. The disease with a thousand faces [French]. Union Med. Can. 120, 357–358 (1991).

    CAS  PubMed  Google Scholar 

  2. Koga, M. et al. Cumulative association of eight susceptibility genes with systemic lupus erythematosus in a Japanese female population. J. Hum. Genet. 56, 503–507 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Lundström, E. et al. HLA-DRB1*04/*13 alleles are associated with vascular disease and antiphospholipid antibodies in systemic lupus erythematosus. Ann. Rheum. Dis. 72, 1018–1025 (2013).

    Article  PubMed  Google Scholar 

  4. Rubtsov, A. V., Rubtsova, K., Kappler, J. W. & Marrack, P. Genetic and hormonal factors in female-biased autoimmunity. Autoimmun. Rev. 9, 494–498 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zandman-Goddard, G., Solomon, M., Rosman, Z., Peeva, E. & Shoenfeld, Y. Environment and lupus-related diseases. Lupus 21, 241–250 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Ginzler, E. M. & Dvorkina, O. Newer therapeutic approaches for systemic lupus erythematosus. Rheum. Dis. Clin. North Am. 31, 315–328 (2005).

    Article  PubMed  Google Scholar 

  7. Gurevitz, S. L., Snyder, J. A., Wessel, E. K., Frey, J. & Williamson, B. A. Systemic lupus erythematosus: a review of the disease and treatment options. Consult. Pharm. 28, 110–121 (2013).

    Article  PubMed  Google Scholar 

  8. Somers, E. C. et al. Population-based incidence and prevalence of systemic lupus erythematosus: the Michigan Lupus Epidemiology & Surveillance (MILES) Program. Arthritis Rheumatol. 66, 369–378 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Amur, S., Parekh, A. & Mummaneni, P. Sex differences and genomics in autoimmune diseases. J. Autoimmun. 38, J254–J265 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Bove, R. Autoimmune diseases and reproductive aging. Clin. Immunol. 149, 251–264 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Duarte, C., Couto, M., Ines, I. & Liang, M. H. in Systemic Lupus Erythematosus (eds Lahita, R. G. et al.) 673–696 (Elsevier, 2011).

    Book  Google Scholar 

  12. Mak, A., Cheung, M. W., Chiew, H. J., Liu, Y. & Ho, R. C. Global trend of survival and damage of systemic lupus erythematosus: meta-analysis and meta-regression of observational studies from the 1950s to 2000s. Semin. Arthritis Rheum. 41, 830–839 (2012).

    Article  PubMed  Google Scholar 

  13. Zirkzee, E. et al. Mortality in neuropsychiatric systemic lupus erythematosus (NPSLE). Lupus 23, 31–38 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Ainiala, H., Loukkola, J., Peltola, J., Korpela, M. & Hietaharju, A. The prevalence of neuropsychiatric syndromes in systemic lupus erythematosus. Neurology 57, 496–500 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Bertsias, G. K. & Boumpas, D. T. Pathogenesis, diagnosis and management of neuropsychiatric SLE manifestations. Nat. Rev. Rheumatol. 6, 358–367 (2010).

    Article  PubMed  Google Scholar 

  16. Borowoy, A. M. et al. Neuropsychiatric lupus: the prevalence and autoantibody associations depend on the definition: results from the 1000 Faces of Lupus cohort. Semin. Arthritis Rheum. 42, 179–185 (2012).

    Article  PubMed  Google Scholar 

  17. Unterman, A. et al. Neuropsychiatric syndromes in systemic lupus erythematosus: a meta-analysis. Semin. Arthritis Rheum. 41, 1–11 (2011).

    Article  PubMed  Google Scholar 

  18. Kampylafka, E. I. et al. Incidence and prevalence of major central nervous system involvement in systemic lupus erythematosus: a 3-year prospective study of 370 patients. PLoS ONE 8, e55843 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lim, L. S., Lefebvre, A., Benseler, S., Peralta, M. & Silverman, E. D. Psychiatric illness of systemic lupus erythematosus in childhood: spectrum of clinically important manifestations. J. Rheumatol. 40, 506–512 (2013).

    Article  PubMed  Google Scholar 

  20. De Vries, B. et al. TREX1 gene variant in neuropsychiatric systemic lupus erythematosus. Ann. Rheum. Dis. 69, 1886–1887 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Namjou, B. et al. Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort. Genes Immun. 12, 270–279 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stetson, D. B., Ko, J. S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134, 587–598 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fanouriakis, A., Boumpas, D. T. & Bertsias, G. K. Pathogenesis and treatment of CNS lupus. Curr. Opin. Rheumatol. 25, 577–583 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Hanly, J. G. Diagnosis and management of neuropsychiatric SLE. Nat. Rev. Rheumatol. 10, 338–347 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Steup-Beekman, G. M. et al. Neuropsychiatric manifestations in patients with systemic lupus erythematosus: epidemiology and radiology pointing to an immune-mediated cause. Ann. Rheum. Dis. 72 (Suppl. 2), 76–79 (2013).

    Article  CAS  Google Scholar 

  26. Mallavarapu, R. K. & Grimsley, E. W. The history of lupus erythematosus. South. Med. J. 100, 896–898 (2007).

    Article  PubMed  Google Scholar 

  27. Sciascia, S. et al. Central nervous system involvement in systemic lupus erythematosus: overview on classification criteria. Autoimmun. Rev. 12, 426–429 (2013).

    Article  PubMed  Google Scholar 

  28. [No authors listed] The American College of Rheumatology nomenclature and case definitions for neuropsychiatric lupus syndromes. Arthritis Rheum. 42, 599–608 (1999).

  29. Hanly, J. G. et al. Prospective analysis of neuropsychiatric events in an international disease inception cohort of patients with systemic lupus erythematosus. Ann. Rheum. Dis. 69, 529–535 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Bertsias, G. K. et al. EULAR recommendations for the management of systemic lupus erythematosus with neuropsychiatric manifestations: report of a task force of the EULAR standing committee for clinical affairs. Ann. Rheum. Dis. 69, 2074–2082 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Devreese, K. M. Standardization of antiphospholipid antibody assays. Where do we stand? Lupus 21, 718–721 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Julian, L. J. et al. Cardiovascular and disease-related predictors of depression in systemic lupus erythematosus. Arthritis Care Res. 63, 542–549 (2011).

    Article  Google Scholar 

  33. Murray, S. G. et al. Cardiovascular disease and cognitive dysfunction in systemic lupus erythematosus. Arthritis Care Res. 64, 1328–1333 (2012).

    Article  Google Scholar 

  34. Hanly, J. G. et al. Seizure disorders in systemic lupus erythematosus results from an international, prospective, inception cohort study. Ann. Rheum. Dis. 71, 1502–1509 (2012).

    Article  PubMed  Google Scholar 

  35. Hanly, J. G. & Harrison, M. J. Management of neuropsychiatric lupus. Best Pract. Res. Clin. Rheumatol. 19, 799–821 (2005).

    Article  PubMed  Google Scholar 

  36. Joseph, F. G. & Scolding, N. J. Neurolupus. Pract. Neurol. 10, 4–15 (2010).

    Article  PubMed  Google Scholar 

  37. Birnbaum, J., Petri, M., Thompson, R., Izbudak, I. & Kerr, D. Distinct subtypes of myelitis in systemic lupus erythematosus. Arthritis Rheum. 60, 3378–3387 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Scolding, N. J. & Joseph, F. G. The neuropathology and pathogenesis of systemic lupus erythematosus. Neuropathol. Appl. Neurobiol. 28, 173–189 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Khubchandani, R. P., Viswanathan, V. & Desai, J. Unusual neurologic manifestations (I): parkinsonism in juvenile SLE. Lupus 16, 572–575 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Avcin, T., Benseler, S. M., Tyrrell, P. N., Cucnik, S. & Silverman, E. D. A followup study of antiphospholipid antibodies and associated neuropsychiatric manifestations in 137 children with systemic lupus erythematosus. Arthritis Rheum. 59, 206–213 (2008).

    Article  PubMed  Google Scholar 

  41. Lefèvre, G. et al. Neuropsychiatric systemic lupus erythematosus (1st part). Cases definitions and diagnosis and treatment of central nervous system and psychiatric manifestations of systemic lupus erythematosus [French]. Rev. Med. Interne 33, 491–502 (2012).

    Article  PubMed  Google Scholar 

  42. Marullo, S. et al. Lupoid sclerosis with antiphospholipid and antimyelin antibodies. J. Rheumatol. 20, 747–749 (1993).

    CAS  PubMed  Google Scholar 

  43. Hanly, J. G. Neuropsychiatric lupus. Rheum. Dis. Clin. N. Am. 31, 273–298 (2005).

    Article  Google Scholar 

  44. Kozora, E., Ellison, M. C. & West, S. Reliability and validity of the proposed American College of Rheumatology neuropsychological battery for systemic lupus erythematosus. Arthritis Care Res. 51, 810–818 (2004).

    Article  Google Scholar 

  45. Mak, A., Ho, R. C. & Lau, C. S. Clinical implications of neuropsychiatric systemic lupus erythematosus. Adv. Psychiatr. Treat. 15, 451–458 (2009).

    Article  Google Scholar 

  46. Sanna, G., D'Cruz, D. & Cuadrado, M. J. Cerebral manifestations in the antiphospholipid (Hughes) syndrome. Rheum. Dis. Clin. North Am. 32, 465–490 (2006).

    Article  PubMed  Google Scholar 

  47. Kozora, E., Ellison, M. C. & West, S. Depression, fatigue, and pain in systemic lupus erythematosus (SLE): relationship to the American College of Rheumatology SLE neuropsychological battery. Arthritis Rheum. 55, 628–635 (2006).

    Article  PubMed  Google Scholar 

  48. Sehlo, M. G. & Bahlas, S. M. Perceived illness stigma is associated with depression in female patients with systemic lupus erythematosus. J. Psychosom. Res. 74, 248–251 (2013).

    Article  PubMed  Google Scholar 

  49. Bonfa, E. et al. Association between lupus psychosis and anti-ribosomal P protein antibodies. N. Engl. J. Med. 317, 265–271 (1987).

    Article  CAS  PubMed  Google Scholar 

  50. Schneebaum, A. B. et al. Association of psychiatric manifestations with antibodies to ribosomal P proteins in systemic lupus erythematosus. Am. J. Med. 90, 54–62 (1991).

    Article  CAS  PubMed  Google Scholar 

  51. Gao, H.-X., Sanders, E., Tieng, A. T. & Putterman, C. Sex and autoantibody titers determine the development of neuropsychiatric manifestations in lupus-prone mice. J. Neuroimmunol. 229, 112–122 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Katzav, A. et al. Induction of autoimmune depression in mice by anti-ribosomal P antibodies via the limbic system. Arthritis Rheum. 56, 938–948 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Appenzeller, S., Cendes, F. & Costallat, L. T. Acute psychosis in systemic lupus erythematosus. Rheumatol. Int. 28, 237–243 (2008).

    Article  PubMed  Google Scholar 

  54. Denburg, S. D., Carbotte, R. M. & Denburg, J. A. Psychological aspects of systemic lupus erythematosus: cognitive function, mood, and self-report. J. Rheumatol. 24, 998–1003 (1997).

    CAS  PubMed  Google Scholar 

  55. Briani, C. et al. Neurolupus is associated with anti-ribosomal P protein antibodies: an inception cohort study. J. Autoimmun. 32, 79–84 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Hanly, J. G. et al. Autoantibodies and neuropsychiatric events at the time of systemic lupus erythematosus diagnosis: results from an international inception cohort study. Arthritis Rheum. 58, 843–853 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Karassa, F. B. et al. Accuracy of anti-ribosomal P protein antibody testing for the diagnosis of neuropsychiatric systemic lupus erythematosus: an international meta-analysis. Arthritis Rheum. 54, 312–324 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Postal, M., Costallat, L. T. & Appenzeller, D. S. Neuropsychiatric manifestations in systemic lupus erythematosus. CNS Drugs 25, 721–736 (2011).

    Article  PubMed  Google Scholar 

  59. Davey, R., Bamford, J. & Emery, P. The ACR classification criteria for headache disorders in SLE fail to classify certain prevalent headache types. Cephalalgia 28, 296–299 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Hanly, J. G. et al. Headache in systemic lupus erythematosus: results from a prospective, international inception cohort study. Arthritis Rheum. 65, 2887–2897 (2013).

    Article  PubMed  Google Scholar 

  61. Mitsikostas, D. D., Katsiari, C. & Sfikakis, P. P. 'Lupus headache' may not exist: comment on the article of Hanly et al. Arthritis Rheum. http://dx.doi.org/10.1002/art.38333.

  62. Bertsias, G. K., Pamfil, C., Fanouriakis, A. & Boumpas, D. T. Diagnostic criteria for systemic lupus erythematosus: has the time come? Nat. Rev. Rheumatol. 9, 687–694 (2013).

    Article  PubMed  Google Scholar 

  63. Borchers, A. T. et al. Neuropsychiatric features of systemic lupus erythematosus. Autoimmun. Rev. 4, 329–344 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Netto, T. M. et al. Neuropsychiatric lupus: classification criteria in neuroimaging studies. Can. J. Neurol. Sci. 40, 284–291 (2013).

    Article  PubMed  Google Scholar 

  65. Sánchez-Guerrero, J., Aranow, C., Mackay, M., Volpe, B. & Diamond, B. Neuropsychiatric systemic lupus erythematosus reconsidered. Nat. Rev. Rheumatol. 4, 112–113 (2008).

    Article  Google Scholar 

  66. Rekvig, O. P. et al. Autoantibodies in lupus: culprits or passive bystanders? Autoimmun. Rev. 11, 596–603 (2012).

    Article  PubMed  Google Scholar 

  67. Rhiannon, J. J. Systemic lupus erythematosus involving the nervous system: presentation, pathogenesis, and management. Clin. Rev. Allergy Immunol. 34, 356–360 (2008).

    Article  PubMed  Google Scholar 

  68. Efthimiou, P. & Blanco, M. Pathogenesis of neuropsychiatric systemic lupus erythematosus and potential biomarkers. Mod. Rheumatol. 19, 457–468 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Govoni, M. et al. Factors and comorbidities associated with first neuropsychiatric event in systemic lupus erythematosus: does a risk profile exist? A large multicentre retrospective cross-sectional study on 959 Italian patients. Rheumatology 51, 157–168 (2012).

    Article  PubMed  Google Scholar 

  70. Okamoto, H., Kobayashi, A. & Yamanaka, H. Cytokines and chemokines in neuropsychiatric syndromes of systemic lupus erythematosus. J. Biomed. Biotechnol. 2010, 268436 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zandman-Goddard, G., Chapman, J. & Shoenfeld, Y. Autoantibodies involved in neuropsychiatric SLE and antiphospholipid syndrome. Semin. Arthritis Rheum. 36, 297–315 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Abbott, N. J., Patabendige, A. A., Dolman, D. E., Yusof, S. R. & Begley, D. J. Structure and function of the blood–brain barrier. Neurobiol. Dis. 37, 13–25 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Carvey, P. M., Hendey, B. & Monahan, A. J. The blood–brain barrier in neurodegenerative disease: a rhetorical perspective. J. Neurochem. 111, 291–314 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Abbott, N. J., Mendonça, L. L. & Dolman, D. E. M. The blood–brain barrier in systemic lupus erythematosus. Lupus 12, 908–915 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Diamond, B., Huerta, P. T., Mina-Osorio, P., Kowal, C. & Volpe, B. T. Losing your nerves? Maybe it's the antibodies. Nat. Rev. Immunol. 9, 449–456 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Stock, A. D., Wen, J. & Putterman, C. Neuropsychiatric lupus, the blood brain barrier, and the TWEAK/Fn14 pathway. Front. Immunol. 4, 484 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. McLean, B. N., Miller, D. & Thompson, E. J. Oligoclonal banding of IgG in CSF, blood-brain barrier function, and MRI findings in patients with sarcoidosis, systemic lupus erythematosus, and Behçet's disease involving the nervous system. J. Neurol. Neurosurg. Psychiatry 58, 548–554 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nishimura, K., Harigai, M., Omori, M., Sato, E. & Hara, M. Blood-brain barrier damage as a risk factor for corticosteroid-induced psychiatric disorders in systemic lupus erythematosus. Psychoneuroendocrinology 33, 395–403 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Sato, T. et al. Anti-U1 RNP antibodies in cerebrospinal fluid are associated with central neuropsychiatric manifestations in systemic lupus erythematosus and mixed connective tissue disease. Arthritis Rheum. 62, 3730–3740 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Alexander, J. J. & Quigg, R. J. Systemic lupus erythematosus and the brain: what mice are telling us. Neurochem. Int. 50, 5–11 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Sidor, M. M. et al. Elevated immunoglobulin levels in the cerebrospinal fluid from lupus-prone mice. J. Neuroimmunol. 165, 104–113 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zameer, A. & Hoffman, S. A. Immunoglobulin binding to brain in autoimmune mice. J. Neuroimmunol. 120, 10–18 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Sakic´, B. et al. Proliferating brain cells are a target of neurotoxic CSF in systemic autoimmune disease. J. Neuroimmunol. 169, 68–85 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jacob, A. et al. C5a alters blood–brain barrier integrity in experimental lupus. FASEB J. 24, 1682–1688 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zaccagni, H., Fried, J., Cornell, J., Padilla, P. & Brey, R. L. Soluble adhesion molecule levels, neuropsychiatric lupus and lupus-related damage. Front. Biosci. 9, 1654–1659 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Bluestein, H. G., Williams, G. W. & Steinberg, A. D. Cerebrospinal fluid antibodies to neuronal cells: association with neuropsychiatric manifestations of systemic lupus erythematosus. Am. J. Med. 70, 240–246 (1981).

    Article  CAS  PubMed  Google Scholar 

  87. Sfikakis, P. P. et al. Increased levels of intercellular adhesion molecule-1 in the serum of patients with systemic lupus erythematosus. Clin. Exp. Rheumatol. 12, 5–9 (1994).

    CAS  PubMed  Google Scholar 

  88. Spronk, P. E., Bootsma, H., Huitema, M. G., Limburg, P. C. & Kallenberg, C. G. Levels of soluble VCAM-1, soluble ICAM-1, and soluble E-selectin during disease exacerbations in patients with systemic lupus erythematosus (SLE); a long term prospective study. Clin. Exp. Immunol. 97, 439–444 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Greenwood, D. L., Gitlits, V. M., Alderuccio, F., Sentry, J. W. & Toh, B.-H. Autoantibodies in neuropsychiatric lupus. Autoimmunity 35, 79–86 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Hanly, J. G., Robichaud, J. & Fisk, J. D. Anti-NR2 glutamate receptor antibodies and cognitive function in systemic lupus erythematosus. J. Rheumatol. 33, 1553–1558 (2006).

    CAS  PubMed  Google Scholar 

  91. Harrison, M. J., Ravdin, L. D. & Lockshin, M. D. Relationship between serum NR2a antibodies and cognitive dysfunction in systemic lupus erythematosus. Arthritis Rheum. 54, 2515–2522 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Arinuma, Y., Yanagida, T. & Hirohata, S. Association of cerebrospinal fluid anti-NR2 glutamate receptor antibodies with diffuse neuropsychiatric systemic lupus erythematosus. Arthritis Rheum. 58, 1130–1135 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Fragoso-Loyo, H. et al. Serum and cerebrospinal fluid autoantibodies in patients with neuropsychiatric lupus erythematosus. Implications for diagnosis and pathogenesis. PLoS ONE 3, e3347 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Katsumata, Y. et al. Diagnostic reliability of cerebral spinal fluid tests for acute confusional state (delirium) in patients with systemic lupus erythematosus: interleukin 6 (IL-6), IL-8, interferon-alpha, IgG index, and Q-albumin. J. Rheumatol. 34, 2010–2017 (2007).

    CAS  PubMed  Google Scholar 

  95. Yoshio, T., Hirata, D., Onda, K., Nara, H. & Minota, S. Antiribosomal P protein antibodies in cerebrospinal fluid are associated with neuropsychiatric systemic lupus erythematosus. J. Rheumatol. 32, 34–39 (2005).

    CAS  PubMed  Google Scholar 

  96. Yoshio, T., Onda, K., Nara, H. & Minota, S. Association of IgG anti-NR2 glutamate receptor antibodies in cerebrospinal fluid with neuropsychiatric systemic lupus erythematosus. Arthritis Rheum. 54, 675–678 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Stanojcic, M., Loheswaran, G., Xu, L., Hoffman, S. A. & Sakic, B. Intrathecal antibodies and brain damage in autoimmune MRL mice. Brain. Behav. Immun. 24, 289–297 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Hanly, J. G., Walsh, N. M. & Sangalang, V. Brain pathology in systemic lupus erythematosus. J. Rheumatol. 19, 732–741 (1992).

    CAS  PubMed  Google Scholar 

  99. Mehta, N. et al. Platelet C4d is associated with acute ischemic stroke and stroke severity. Stroke 39, 3236–3241 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Toledano, P., Sarbu, N., Espinosa, G., Bargalló, N. & Cervera, R. Neuropsychiatric systemic lupus erythematosus: magnetic resonance imaging findings and correlation with clinical and immunological features. Autoimmun. Rev. 12, 1166–1170 (2013).

    Article  PubMed  Google Scholar 

  101. Brooks, W. M. et al. The histopathologic associates of neurometabolite abnormalities in fatal neuropsychiatric systemic lupus erythematosus. Arthritis Rheum. 62, 2055–2063 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Ellison, D., Gatter, K., Heryet, A. & Esiri, M. Intramural platelet deposition in cerebral vasculopathy of systemic lupus erythematosus. J. Clin. Pathol. 46, 37–40 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sibbitt, W. L. Jr et al. Magnetic resonance imaging and brain histopathology in neuropsychiatric systemic lupus erythematosus. Semin. Arthritis Rheum. 40, 32–52 (2010).

    Article  PubMed  Google Scholar 

  104. Diamond, B. et al. Immunity and acquired alterations in cognition and emotion: lessons from SLE. Adv. Immunol. 89, 289–320 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Diamond, B., Honig, G., Mader, S., Brimberg, L. & Volpe, B. T. Brain-reactive antibodies and disease. Annu. Rev. Immunol. 31, 345–385 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gono, T., Kawaguchi, Y. & Yamanaka, H. Discoveries in the pathophysiology of neuropsychiatric lupus erythematosus: consequences for therapy. BMC Med. 11, 91 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Harris, E. N. & Pierangeli, S. Antiphospholipid antibodies and cerebral lupus. Ann. N. Y. Acad. Sci. 823, 270–278 (1997).

    Article  CAS  PubMed  Google Scholar 

  108. Afeltra, A. et al. Neuropsychiatric lupus syndromes: relationship with antiphospholipid antibodies. Neurology 61, 108–110 (2003).

    Article  PubMed  Google Scholar 

  109. De Groot, P. G. & Urbanus, R. T. The significance of autoantibodies against β2-glycoprotein I. Blood 120, 266–274 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Abda, E. A. et al. Markers of acute neuropsychiatric systemic lupus erythematosus: a multidisciplinary evaluation. Rheumatol. Int. 33, 1243–1253 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Denburg, S. D. & Denburg, J. A. Cognitive dysfunction and antiphospholipid antibodies in systemic lupus erythematosus. Lupus 12, 883–890 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Sastre-Garriga, J. & Montalban, X. APS and the brain. Lupus 12, 877–882 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Eber, T., Chapman, J. & Shoenfeld, Y. Anti-ribosomal P-protein and its role in psychiatric manifestations of systemic lupus erythematosus: myth or reality? Lupus 14, 571–575 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Hoffmann, M. H., Trembleau, S., Muller, S. & Steiner, G. Nucleic acid-associated autoantigens: pathogenic involvement and therapeutic potential. J. Autoimmun. 34, J178–J206 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Matus, S. et al. Antiribosomal-P autoantibodies from psychiatric lupus target a novel neuronal surface protein causing calcium influx and apoptosis. J. Exp. Med. 204, 3221–3234 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. DeGiorgio, L. A. et al. A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat. Med. 7, 1189–1193 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Husebye, E. S. et al. Autoantibodies to a NR2A peptide of the glutamate/NMDA receptor in sera of patients with systemic lupus erythematosus. Ann. Rheum. Dis. 64, 1210–1213 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kowal, C. et al. Cognition and immunity; antibody impairs memory. Immunity 21, 179–188 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Lauvsnes, M. B. & Omdal, R. Systemic lupus erythematosus, the brain, and anti-NR2 antibodies. J. Neurol. 259, 622–629 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Collingridge, G. L., Kehl, S. J. & McLennan, H. Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J. Physiol. 334, 33–46 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Barkus, C. et al. Hippocampal NMDA receptors and anxiety: at the interface between cognition and emotion. Eur. J. Pharmacol. 626, 49–56 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Watson, P., Storbeck, J., Mattis, P. & Mackay, M. Cognitive and emotional abnormalities in systemic lupus erythematosus: evidence for amygdala dysfunction. Neuropsychol. Rev. 22, 252–270 (2012).

    Article  PubMed  Google Scholar 

  123. Huerta, P. T., Kowal, C., DeGiorgio, L. A., Volpe, B. T. & Diamond, B. Immunity and behavior: antibodies alter emotion. Proc. Natl Acad. Sci. USA 103, 678–683 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kowal, C. et al. Human lupus autoantibodies against NMDA receptors mediate cognitive impairment. Proc. Natl Acad. Sci. USA 103, 19854–19859 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kozora, E. et al. Antibodies against N-methyl-D-aspartate receptors in patients with systemic lupus erythematosus without major neuropsychiatric syndromes. J. Neurol. Sci. 295, 87–91 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lapteva, L. et al. Anti-N-methyl-D-aspartate receptor antibodies, cognitive dysfunction, and depression in systemic lupus erythematosus. Arthritis Rheum. 54, 2505–2514 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Yoshio, T., Okamoto, H., Hirohata, S. & Minota, S. IgG anti-NR2 glutamate receptor autoantibodies from patients with systemic lupus erythematosus activate endothelial cells. Arthritis Rheum. 65, 457–463 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Hirohata, S., Arinuma, Y., Yanagida, T. & Yoshio, T. Blood–brain barrier damages and intrathecal synthesis of anti-N-methyl-D-aspartate receptor NR2 antibodies in diffuse psychiatric/neuropsychological syndromes in systemic lupus erythematosus. Arthritis Res. Ther. 16, R77 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kuhlmann, C. R. et al. MK801 blocks hypoxic blood-brain-barrier disruption and leukocyte adhesion. Neurosci. Lett. 449, 168–172 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Williams, R. C., Sugiura, K. & Tan, E. M. Antibodies to microtubule-associated protein 2 in patients with neuropsychiatric systemic lupus erythematosus. Arthritis Rheum. 50, 1239–1247 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Decker, P. et al. Zinc is an essential cofactor for recognition of the DNA binding domain of poly(ADP-ribose) polymerase by antibodies in autoimmune rheumatic and bowel diseases. Arthritis Rheum. 41, 918–926 (1998).

    Article  CAS  PubMed  Google Scholar 

  132. Decker, P., Isenberg, D. & Muller, S. Inhibition of caspase-3-mediated poly(ADP-ribose) polymerase (PARP) apoptotic cleavage by human PARP autoantibodies and effect on cells undergoing apoptosis. J. Biol. Chem. 275, 9043–9046 (2000).

    Article  CAS  PubMed  Google Scholar 

  133. Asher, G. et al. Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142, 943–953 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Goldberg, S., Visochek, L., Giladi, E., Gozes, I. & Cohen-Armon, M. PolyADP-ribosylation is required for long-term memory formation in mammals. J. Neurochem. 111, 72–79 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Schreiber, V. et al. Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J. Biol. Chem. 277, 23028–23036 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. Appenzeller, S., Carnevalle, A. D., Li, L. M., Costallat, L. T. & Cendes, F. Hippocampal atrophy in systemic lupus erythematosus. Ann. Rheum. Dis. 65, 1585–1589 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ballok, D. A., Woulfe, J., Sur, M., Cyr, M. & Sakic, B. Hippocampal damage in mouse and human forms of systemic autoimmune disease. Hippocampus 14, 649–661 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Swaak, A. J., Aarden, L. A., Statius van Eps, L. W. & Feltkamp, T. E. Anti-dsDNA and complement profiles as prognostic guides in systemic lupus erythematosus. Arthritis Rheum. 22, 226–235 (1979).

    Article  CAS  PubMed  Google Scholar 

  139. Hsieh, S.-C. & Yu, C.-L. Autoantibody profiling in systemic lupus erythematosus. Curr. Biomark. Find. 3, 55–65 (2013).

    Google Scholar 

  140. Popescu, A. & Kao, A. H. Neuropsychiatric systemic lupus erythematosus. Curr. Neuropharmacol. 9, 449–457 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ainiala, H. et al. Increased serum matrix metalloproteinase 9 levels in systemic lupus erythematosus patients with neuropsychiatric manifestations and brain magnetic resonance imaging abnormalities. Arthritis Rheum. 50, 858–865 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Trysberg, E., Blennow, K., Zachrisson, O. & Tarkowski, A. Intrathecal levels of matrix metalloproteinases in systemic lupus erythematosus with central nervous system engagement. Arthritis Res. Ther. 6, R551–R556 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kwiecin´ski, J. et al. Relationship between elevated cerebrospinal fluid levels of plasminogen activator inhibitor 1 and neuronal destruction in patients with neuropsychiatric systemic lupus erythematosus. Arthritis Rheum. 60, 2094–2101 (2009).

    Article  CAS  Google Scholar 

  144. Szelényi, J. Cytokines and the central nervous system. Brain Res. Bull. 54, 329–338 (2001).

    Article  PubMed  Google Scholar 

  145. Chun, H.-Y. et al. Cytokine IL-6 and IL-10 as biomarkers in systemic lupus erythematosus. J. Clin. Immunol. 27, 461–466 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Trysberg, E., Carlsten, H. & Tarkowski, A. Intrathecal cytokines in systemic lupus erythematosus with central nervous system involvement. Lupus 9, 498–503 (2000).

    Article  CAS  PubMed  Google Scholar 

  147. Fragoso-Loyo, H. et al. Interleukin-6 and chemokines in the neuropsychiatric manifestations of systemic lupus erythematosus. Arthritis Rheum. 56, 1242–1250 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Hirohata, S. et al. Accuracy of cerebrospinal fluid IL-6 testing for diagnosis of lupus psychosis. A multicenter retrospective study. Clin. Rheumatol. 28, 1319–1323 (2009).

    Article  PubMed  Google Scholar 

  149. Trysberg, E., Nylen, K., Rosengren, L. E. & Tarkowski, A. Neuronal and astrocytic damage in systemic lupus erythematosus patients with central nervous system involvement. Arthritis Rheum. 48, 2881–2887 (2003).

    Article  PubMed  Google Scholar 

  150. Wen, J. et al. Neuropsychiatric disease in murine lupus is dependent on the TWEAK/Fn14 pathway. J. Autoimmun. 43, 44–54 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wajant, H. The TWEAK-Fn14 system as a potential drug target. Br. J. Pharmacol. 170, 748–764 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. George-Chandy, A., Trysberg, E. & Eriksson, K. Raised intrathecal levels of APRIL and BAFF in patients with systemic lupus erythematosus: relationship to neuropsychiatric symptoms. Arthritis Res. Ther. 10, R97 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Vincent, F. B., Northcott, M., Hoi, A., Mackay, F. & Morand, E. F. Association of serum B cell activating factor from the tumour necrosis factor family (BAFF) and a proliferation-inducing ligand (APRIL) with central nervous system and renal disease in systemic lupus erythematosus. Lupus 22, 873–884 (2013).

    Article  CAS  PubMed  Google Scholar 

  154. Kasama, T., Odai, T., Wakabayashi, K., Yajima, N. & Miwa, Y. Chemokines in systemic lupus erythematosus involving the central nervous system. Front. Biosci. 13, 2527–2536 (2008).

    Article  CAS  PubMed  Google Scholar 

  155. Lee, S. C., Dickson, D. W., Liu, W. & Brosnan, C. F. Induction of nitric oxide synthase activity in human astrocytes by interleukin-1 beta and interferon-gamma. J. Neuroimmunol. 46, 19–24 (1993).

    Article  CAS  PubMed  Google Scholar 

  156. Svenungsson, E. et al. Increased levels of proinflammatory cytokines and nitric oxide metabolites in neuropsychiatric lupus erythematosus. Ann. Rheum. Dis. 60, 372–379 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Narváez, J. et al. Rituximab therapy in refractory neuropsychiatric lupus: current clinical evidence. Semin. Arthritis Rheum. 41, 364–372 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. Lim, L. S., Lefebvre, A., Benseler, S. & Silverman, E. D. Longterm outcomes and damage accrual in patients with childhood systemic lupus erythematosus with psychosis and severe cognitive dysfunction. J. Rheumatol. 40, 513–519 (2013).

    Article  PubMed  Google Scholar 

  159. Paholpak, P., Rangseekajee, P. & Foocharoen, C. Characteristics, treatments and outcome of psychosis in Thai SLE patients. J. Psychosom. Res. 73, 448–451 (2012).

    Article  PubMed  Google Scholar 

  160. Koutsokeras, T. & Healy, T. Systemic lupus erythematosus and lupus nephritis. Nat. Rev. Drug Discov. 13, 173–174 (2014).

    Article  CAS  PubMed  Google Scholar 

  161. Zimmer, R., Scherbarth, H. R., Rillo, O. L., Gomez-Reino, J. J. & Muller, S. Lupuzor/P140 peptide in patients with systemic lupus erythematosus: a randomised, double-blind, placebo-controlled phase IIb clinical trial. Ann. Rheum. Dis. 72, 1830–1835 (2013).

    Article  CAS  PubMed  Google Scholar 

  162. Haupt, M. et al. Improvement of coping abilities in patients with systemic lupus erythematosus: a prospective study. Ann. Rheum. Dis. 64, 1618–1623 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ainiala, H. et al. Validity of the new American College of Rheumatology criteria for neuropsychiatric lupus syndromes: a population-based evaluation. Arthritis Rheum. 45, 419–423 (2001).

    Article  CAS  PubMed  Google Scholar 

  164. Hanly, J. G. et al. Neuropsychiatric events at the time of diagnosis of systemic lupus erythematosus: an international inception cohort study. Arthritis Rheum. 56, 265–273 (2007).

    Article  CAS  PubMed  Google Scholar 

  165. Mackay, M., Ulug, A. M. & Volpe, B. T. in Systemic Lupus Erythematosus (eds Lahita, R. G. et al.) 491–511 (Elsevier, 2011).

    Book  Google Scholar 

  166. Abreu, M. R. et al. Neuropsychiatric systemic lupus erythematosus: correlation of brain MR imaging, CT, and SPECT. Clin. Imaging 29, 215–221 (2005).

    Article  PubMed  Google Scholar 

  167. Curiel, R., Akin, E. A., Beaulieu, G., DePalma, L. & Hashefi, M. PET/CT imaging in systemic lupus erythematosus. Ann. N. Y. Acad. Sci. 1228, 71–80 (2011).

    Article  PubMed  Google Scholar 

  168. Ainiala, H. et al. Cerebral MRI abnormalities and their association with neuropsychiatric manifestations in SLE: a population-based study. Scand. J. Rheumatol. 34, 376–382 (2005).

    Article  CAS  PubMed  Google Scholar 

  169. Appenzeller, S., Rondina, J. M., Li, L. M., Costallat, L. T. & Cendes, F. Cerebral and corpus callosum atrophy in systemic lupus erythematosus. Arthritis Rheum. 52, 2783–2789 (2005).

    Article  PubMed  Google Scholar 

  170. Appenzeller, S., Pike, G. B. & Clarke, A. E. Magnetic resonance imaging in the evaluation of central nervous system manifestations in systemic lupus erythematosus. Clin. Rev. Allergy Immunol. 34, 361–366 (2008).

    Article  PubMed  Google Scholar 

  171. Luyendijk, J. et al. Neuropsychiatric systemic lupus erythematosus: lessons learned from magnetic resonance imaging. Arthritis Rheum. 63, 722–732 (2011).

    Article  CAS  PubMed  Google Scholar 

  172. Sachdev, P., Chen, X. & Wen, W. White matter hyperintensities in mid-adult life. Curr. Opin. Psychiatry 21, 268–274 (2008).

    Article  PubMed  Google Scholar 

  173. Bosma, G. P. et al. Multisequence magnetic resonance imaging study of neuropsychiatric systemic lupus erythematosus. Arthritis Rheum. 50, 3195–3202 (2004).

    Article  PubMed  Google Scholar 

  174. Emmer, B. J. et al. Detection of change in CNS involvement in neuropsychiatric SLE: a magnetization transfer study. J. Magn. Reson. Imaging 24, 812–816 (2006).

    Article  PubMed  Google Scholar 

  175. Emmer, B. J. et al. Correlation of magnetization transfer ratio histogram parameters with neuropsychiatric systemic lupus erythematosus criteria and proton magnetic resonance spectroscopy: association of magnetization transfer ratio peak height with neuronal and cognitive dysfunction. Arthritis Rheum. 58, 1451–1457 (2008).

    Article  CAS  PubMed  Google Scholar 

  176. Rovaris, M. et al. Brain involvement in systemic immune mediated diseases: magnetic resonance and magnetisation transfer imaging study. J. Neurol. Neurosurg. Psychiatry 68, 170–177 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Steens, S. C. et al. Association between microscopic brain damage as indicated by magnetization transfer imaging and anticardiolipin antibodies in neuropsychiatric lupus. Arthritis Res. Ther. 8, R38 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Emmer, B. J. et al. Tract-based spatial statistics on diffusion tensor imaging in systemic lupus erythematosus reveals localized involvement of white matter tracts. Arthritis Rheum. 62, 3716–3721 (2010).

    Article  PubMed  Google Scholar 

  179. Jung, R. E. et al. Diffusion tensor imaging in neuropsychiatric systemic lupus erythematosus. BMC Neurol. 10, 65 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Zimny, A. et al. In vivo evaluation of brain damage in the course of systemic lupus erythematosus using magnetic resonance spectroscopy, perfusion-weighted and diffusion-tensor imaging. Lupus 23, 10–19 (2014).

    Article  CAS  PubMed  Google Scholar 

  181. DiFrancesco, M. W. et al. Functional magnetic resonance imaging assessment of cognitive function in childhood-onset systemic lupus erythematosus: a pilot study. Arthritis Rheum. 56, 4151–4163 (2007).

    Article  PubMed  Google Scholar 

  182. Fitzgibbon, B. M. et al. Functional MRI in NPSLE patients reveals increased parietal and frontal brain activation during a working memory task compared with controls. Rheumatology 47, 50–53 (2008).

    Article  CAS  PubMed  Google Scholar 

  183. Mak, A., Ren, T., Fu, E. H., Cheak, A. A. & Ho, R. C. A prospective functional MRI study for executive function in patients with systemic lupus erythematosus without neuropsychiatric symptoms. Semin. Arthritis Rheum. 41, 849–858 (2012).

    Article  PubMed  Google Scholar 

  184. Kao, C. H. et al. Discrepancy between regional cerebral blood flow and glucose metabolism of the brain in systemic lupus erythematosus patients with normal brain magnetic resonance imaging findings. Arthritis Rheum. 42, 61–68 (1999).

    Article  CAS  PubMed  Google Scholar 

  185. Kao, C. H. et al. The role of FDG-PET, HMPAO-SPET and MRI in the detection of brain involvement in patients with systemic lupus erythematosus. Eur. J. Nucl. Med. 26, 129–134 (1999).

    Article  CAS  PubMed  Google Scholar 

  186. Komatsu, N. et al. Decreased regional cerebral metabolic rate for glucose in systemic lupus erythematosus patients with psychiatric symptoms. Eur. Neurol. 42, 41–48 (1999).

    Article  CAS  PubMed  Google Scholar 

  187. Lee, S.-W., Park, M.-C., Lee, S.-K. & Park, Y.-B. The efficacy of brain 18F-fluorodeoxyglucose positron emission tomography in neuropsychiatric lupus patients with normal brain magnetic resonance imaging findings. Lupus 21, 1531–1537 (2012).

    Article  CAS  PubMed  Google Scholar 

  188. Weiner, S. M. et al. Diagnosis and monitoring of central nervous system involvement in systemic lupus erythematosus: value of F-18 fluorodeoxyglucose PET. Ann. Rheum. Dis. 59, 377–385 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Appenzeller, S. et al. Voxel-based morphometry of brain SPECT can detect the presence of active central nervous system involvement in systemic lupus erythematosus. Rheumatology 46, 467–472 (2007).

    Article  CAS  PubMed  Google Scholar 

  190. Castellino, G. et al. Single photon emission computed tomography and magnetic resonance imaging evaluation in SLE patients with and without neuropsychiatric involvement. Rheumatology 47, 319–323 (2008).

    Article  CAS  PubMed  Google Scholar 

  191. Otte, A. et al. Brain glucose utilization in systemic lupus erythematosus with neuropsychiatric symptoms: a controlled positron emission tomography study. Eur. J. Nucl. Med. 24, 787–791 (1997).

    CAS  PubMed  Google Scholar 

  192. Appenzeller, S., Costallat, L. T., Li, L. M. & Cendes, F. Magnetic resonance spectroscopy in the evaluation of central nervous system manifestations of systemic lupus erythematosus. Arthritis Rheum. 55, 807–811 (2006).

    Article  CAS  PubMed  Google Scholar 

  193. Axford, J. S., Howe, F. A., Heron, C. & Griffiths, J. R. Sensitivity of quantitative 1H magnetic resonance spectroscopy of the brain in detecting early neuronal damage in systemic lupus erythematosus. Ann. Rheum. Dis. 60, 106–111 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Brey, R. L. Neuropsychiatric lupus: clinical and imaging aspects. Bull. NYU Hosp. Jt Dis. 65, 194–199 (2007).

    PubMed  Google Scholar 

  195. Kozora, E. et al. Cognition, MRS neurometabolites, and MRI volumetrics in non-neuropsychiatric systemic lupus erythematosus: preliminary data. Cogn. Behav. Neurol. 18, 159–162 (2005).

    Article  PubMed  Google Scholar 

  196. Lim, M. K. et al. Systemic lupus erythematosus: brain MR imaging and single-voxel hydrogen 1 MR spectroscopy. Radiology 217, 43–49 (2000).

    Article  CAS  PubMed  Google Scholar 

  197. Lai, N. S. & Lan, J. L. Evaluation of cerebrospinal anticardiolipin antibodies in lupus patients with neuropsychiatric manifestations. Lupus 9, 353–357 (2000).

    Article  CAS  PubMed  Google Scholar 

  198. Aranow, C., Diamond, B. & Mackay, M. Glutamate receptor biology and its clinical significance in neuropsychiatric systemic lupus erythematosus. Rheum. Dis. Clin. North Am. 36, 187–201 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Kowal, C. et al. Cognition and immunity: antibody impairs memory. Immunity 21, 179–188 (2004).

    Article  CAS  PubMed  Google Scholar 

  200. Yokoyama, T. et al. Association between anti-U1 ribonucleoprotein antibodies and inflammatory mediators in cerebrospinal fluid of patients with neuropsychiatric systemic lupus erythematosus. Lupus 23, 635–642 (2014).

    Article  CAS  PubMed  Google Scholar 

  201. Sanna, G. et al. Central nervous system involvement in systemic lupus erythematosus: cerebral imaging and serological profile in patients with and without overt neuropsychiatric manifestations. Lupus 9, 573–583 (2000).

    Article  CAS  PubMed  Google Scholar 

  202. Santer, D. M., Yoshio, T., Minota, S., Möller, T. & Elkon, K. B. Potent induction of IFN-α and chemokines by autoantibodies in the cerebrospinal fluid of patients with neuropsychiatric lupus. J. Immunol. 182, 1192–1201 (2009).

    Article  CAS  PubMed  Google Scholar 

  203. Lefèvre, G. et al. Neuropsychiatric systemic lupus erythematosus (2nd part). Diagnostic and treatment tools in psychiatric or central nervous system manifestations in systemic lupus erythematosus [French]. Rev. Med. Interne 33, 503–513 (2012).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Marinos C. Dalakas (University of Athens Medical School, Athens, Greece) as well as Jean-Louis Pasquali (Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France) and Vincent Fontaa (Centre Hospitalier Universitaire de Strasbourg, Pôle Psychiatrie, Strasbourg, France) for their critical reading of this manuscript. We thank Ralph C. Williams Jr (University of New Mexico School of Medicine, Albuquerque, NM, USA) and Jean Sibilia (Centre Hospitalier Universitaire de Strasbourg, Hôpital de Hautepierre, Service de rhumatologie, Strasbourg, France) for providing serum samples from patients with SLE and healthy donors, respectively, Rufus Burlingame (Inova Diagnostics Inc., San Diego, CA, USA) for providing chromatin-coated ELISA plates, and Maria Kotovskaya for performing ELISA tests that produced the data summarized in Figure 4. We thank Athanasios G. Tzioufas (University of Athens Medical School, Athens, Greece) for providing the MRI scans shown in Figure 1. Research in the laboratory of S.M. is supported financially by the French Centre National de la Recherche Scientifique (CNRS), Région Alsace, and the Laboratory of Excellence Medalis (ANR-10-LABX-0034), Initiative of Excellence (IdEx), Strasbourg University, France.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to all stages of the preparation of the manuscript.

Corresponding author

Correspondence to Sylviane Muller.

Ethics declarations

Competing interests

S.M. is a consultant for ImmuPharma. H.J. D. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeltsch-David, H., Muller, S. Neuropsychiatric systemic lupus erythematosus: pathogenesis and biomarkers. Nat Rev Neurol 10, 579–596 (2014). https://doi.org/10.1038/nrneurol.2014.148

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2014.148

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing