Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New insights into the role of antinuclear antibodies in systemic lupus erythematosus

Abstract

Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by antinuclear antibodies (ANAs) that form immune complexes that mediate pathogenesis by tissue deposition or cytokine induction. Some ANAs bind DNA or associated nucleosome proteins, whereas other ANAs bind protein components of complexes of RNA and RNA-binding proteins (RBPs). Levels of anti-DNA antibodies can fluctuate widely, unlike those of anti-RBP antibodies, which tend to be stable. Because anti-DNA antibody levels can reflect disease activity, repeat testing is common; by contrast, a single anti-RBP antibody determination is thought to suffice for clinical purposes. Experience from clinical trials of novel therapies has provided a new perspective on ANA expression during disease, as many patients with SLE are ANA negative at screening despite previously testing positive. Because trial results suggest that patients who are ANA negative might not respond to certain agents, screening strategies now involve ANA and anti-DNA antibody testing to identify patients with so-called ‘active, autoantibody-positive SLE’. Evidence suggests that ANA responses can decrease over time because of the natural history of disease or the effects of therapy. Together, these findings suggest that, during established disease, more regular serological testing could illuminate changes relevant to pathogenesis and disease status.

Key points

  • Antinuclear antibodies (ANAs) bind DNA, RNA and complexes of nucleic acids and protein.

  • In addition to ANAs, anti-DNA and anti-Sm antibodies are part of the classification criteria for systemic lupus erythematosus (SLE).

  • Anti-DNA antibodies and antibodies that recognize RNA-binding proteins show distinct patterns of expression that relate to their origin from different B cell populations.

  • ANAs can mediate events in the pathogenesis of SLE as either free antibodies or as immune complexes.

  • Amounts of ANAs in patients with SLE can change over time as a result of the natural history of the disease or the effects of immunosuppressive agents.

  • Rescreening of ANA levels after disease onset could provide important information about disease mechanisms and disease status.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anti-DNA and anti-RBP antibodies in systemic lupus erythematosus.
Fig. 2: Mechanisms of glomerulonephritis induction in systemic lupus erythematosus.

Similar content being viewed by others

References

  1. Kaul, A. et al. Systemic lupus erythematosus. Nat. Rev. Dis. Prim. 2, 16039 (2016).

    Article  PubMed  Google Scholar 

  2. Tsokos, G. C., Lo, M. S., Costa Reis, P. & Sullivan, K. E. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat. Rev. Rheumatol. 12, 716–730 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Agmon-Levin, N. et al. International recommendations for the assessment of autoantibodies to cellular antigens referred to as anti-nuclear antibodies. Ann. Rheum. Dis. 73, 17–23 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Pisetsky, D. S. Antinuclear antibody testing: misunderstood or misbegotten? Nat. Rev. Rheumatol. 13, 495–502 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Damoiseaux, J. et al. Clinical relevance of HEp-2 indirect immunofluorescent patterns: the International Consensus on ANA patterns (ICAP) perspective. Ann. Rheum. Dis. 78, 879–889 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Wallace, D. J. et al. A phase II, randomized, double-blind, placebo-controlled, dose-ranging study of belimumab in patients with active systemic lupus erythematosus. Arthritis Rheum. 61, 1168–1178 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Furie, R. et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 63, 3918–3930 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pisetsky, D. S., Rovin, B. H. & Lipsky, P. E. New perspectives in rheumatology: biomarkers as entry criteria for clinical trials of new therapies for systemic lupus erythematosus: the example of antinuclear antibodies and anti-DNA. Arthritis Rheumatol. 69, 487–493 (2017).

    Article  PubMed  Google Scholar 

  9. Hueber, W., Utz, P. J., Steinman, L. & Robinson, W. H. Autoantibody profiling for the study and treatment of autoimmune disease. Arthritis Res. 4, 290–295 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, Q. Z. et al. Protein array autoantibody profiles for insights into systemic lupus erythematosus and incomplete lupus syndromes. Clin. Exp. Immunol. 147, 60–70 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Deng, X. et al. Utility of antinuclear antibody screening by various methods in a clinical laboratory patient cohort. J. Appl. Lab. Med. 1, 36–46 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Olsen, N. J., Choi, M. Y. & Fritzler, M. J. Emerging technologies in autoantibody testing for rheumatic diseases. Arthritis Res. Ther. 19, 172 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Pisetsky, D. S., Bossuyt, X. & Meroni, P. L. ANA as an entry criterion for the classification of SLE. Autoimmun. Rev. 18, 102400 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Choi, M. Y. et al. Antinuclear antibody-negative systemic lupus erythematosus in an international inception cohort. Arthritis Care Res. 71, 893–902 (2019).

    Article  CAS  Google Scholar 

  15. Leuchten, N. et al. Performance of antinuclear antibodies for classifying systemic lupus erythematosus: a systematic literature review and meta-regression of diagnostic data. Arthritis Care Res. 70, 428–438 (2018).

    Article  CAS  Google Scholar 

  16. Aringer, M. et al. 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Arthritis Rheumatol. 71, 1400–1412 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Aringer, M. et al. 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Ann. Rheum. Dis. 78, 1151–1159 (2019).

    Article  PubMed  Google Scholar 

  18. Tan, E. M. et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 25, 1271–1277 (1982).

    Article  CAS  PubMed  Google Scholar 

  19. Petri, M. et al. Derivation and validation of the systemic lupus international collaborating clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 64, 2677–2686 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chevrier, M., Jordan, J., Schreiter, J. & Benson, J. Comparitive analysis of anti-nuclear antibody testing using blinded replicate samples reveals variability between commercial testing laboratories [abstract]. Arthritis Rheumatol. 68, 2809 (2016).

    Google Scholar 

  21. Pisetsky, D. S., Spencer, D. M., Lipsky, P. E. & Rovin, B. H. Assay variation in the detection of antinuclear antibodies in the sera of patients with established SLE. Ann. Rheum. Dis. 77, 911–913 (2018).

    CAS  PubMed  Google Scholar 

  22. Binder, S. R., Genovese, M. C., Merrill, J. T., Morris, R. I. & Metzger, A. L. Computer-assisted pattern recognition of autoantibody results. Clin. Diagn. Lab. Immunol. 12, 1353–1357 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Park, Y. et al. Automated versus conventional microscopic interpretation of antinuclear antibody indirect immunofluorescence test. Ann. Clin. Lab. Sci. 49, 127–133 (2019).

    CAS  PubMed  Google Scholar 

  24. Pisetsky, D. S. Anti-DNA antibodies — quintessential biomarkers of SLE. Nat. Rev. Rheumatol. 12, 102–110 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Viana, V. T., Durcan, L., Bonfa, E. & Elkon, K. B. Ribosomal P antibody: 30 years on the road. Lupus 26, 453–462 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Choi, M. Y., FitzPatrick, R. D., Buhler, K., Mahler, M. & Fritzler, M. J. A review and meta-analysis of anti-ribosomal P autoantibodies in systemic lupus erythematosus. Autoimmun. Rev. 19, 102463 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Ghiggeri, G. M. et al. An update on antibodies to necleosome components as biomarkers of sistemic lupus erythematosus and of lupus flares. Int. J. Mol. Sci. 20, 5799 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  28. Mehra, S. & Fritzler, M. J. The spectrum of anti-chromatin/nucleosome autoantibodies: independent and interdependent biomarkers of disease. J. Immunol. Res. 2014, 368274 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Rekvig, O. P., van der Vlag, J. & Seredkina, N. Review: antinucleosome antibodies: a critical reflection on their specificities and diagnostic impact. Arthritis Rheumatol. 66, 1061–1069 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Rekvig, O. P. The anti-DNA antibody: origin and impact, dogmas and controversies. Nat. Rev. Rheumatol. 11, 530–540 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Stollar, B. D. Antibodies to DNA. Crit. Rev. Biochem. 20, 1–36 (1986).

    Article  CAS  Google Scholar 

  32. Jang, Y. J. & Stollar, B. D. Anti-DNA antibodies: aspects of structure and pathogenicity. Cell. Mol. Life Sci. 60, 309–320 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Schur, P. H. & Sandson, J. Immunologic factors and clinical activity in systemic lupus erythematosus. N. Engl. J. Med. 278, 533–538 (1968).

    Article  CAS  PubMed  Google Scholar 

  34. McCarty, G. A., Rice, J. R., Bembe, M. L. & Pisetsky, D. S. Independent expression of autoantibodies in systemic lupus erythematosus. J. Rheumatol. 9, 691–695 (1982).

    CAS  PubMed  Google Scholar 

  35. Ward, M. M., Pisetsky, D. S. & Christenson, V. D. Antidouble stranded DNA antibody assays in systemic lupus erythematosus: correlations of longitudinal antibody measurements. J. Rheumatol. 16, 609–613 (1989).

    CAS  PubMed  Google Scholar 

  36. ter Borg, E. J., Horst, G., Hummel, E. J., Limburg, P. C. & Kallenberg, C. G. Measurement of increases in anti-double-stranded DNA antibody levels as a predictor of disease exacerbation in systemic lupus erythematosus. A long-term, prospective study. Arthritis Rheum. 33, 634–643 (1990).

    Article  PubMed  Google Scholar 

  37. Portanova, J. P., Arndt, R. E., Tan, E. M. & Kotzin, B. L. Anti-histone antibodies in idiopathic and drug-induced lupus recognize distinct intrahistone regions. J. Immunol. 138, 446–451 (1987).

    CAS  PubMed  Google Scholar 

  38. Vaglio, A. et al. Drug-induced lupus: traditional and new concepts. Autoimmun. Rev. 17, 912–918 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Migliorini, P., Baldini, C., Rocchi, V. & Bombardieri, S. Anti-Sm and anti-RNP antibodies. Autoimmunity 38, 47–54 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Schulte-Pelkum, J., Fritzler, M. & Mahler, M. Latest update on the Ro/SS-A autoantibody system. Autoimmun. Rev. 8, 632–637 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. To, C. H. & Petri, M. Is antibody clustering predictive of clinical subsets and damage in systemic lupus erythematosus? Arthritis Rheum. 52, 4003–4010 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Ching, K. H. et al. Two major autoantibody clusters in systemic lupus erythematosus. PLoS One 7, e32001 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. St Clair, E. W. et al. Expression of autoantibodies to recombinant (U1) RNP-associated 70K antigen in systemic lupus erythematosus. Clin. Immunol. Immunopathol. 54, 266–280 (1990).

    Article  Google Scholar 

  44. Sharp, G. The origin of mixed connective tissue disease: a stimulus for autoimmune disease research. Lupus 18, 1031–1032 (2009).

    Article  PubMed  Google Scholar 

  45. Arbuckle, M. R. et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 349, 1526–1533 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Heinlen, L. D. et al. 60 kD Ro and nRNP A frequently initiate human lupus autoimmunity. PLoS One 5, e9599 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Pisetsky, D. S., McCarty, G. A. & Peters, D. V. Mechanisms of autoantibody production in autoimmune MRL mice. J. Exp. Med. 152, 1302–1310 (1980).

    Article  CAS  PubMed  Google Scholar 

  48. Eisenberg, R. A., Craven, S. Y., Warren, R. W. & Cohen, P. L. Stochastic control of anti-Sm autoantibodies in MRL/Mp-lpr/lpr mice. J. Clin. Invest. 80, 691–697 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Catalina, M. D. et al. Patient ancestry significantly contributes to molecular heterogeneity of systemic lupus erythematosus. JCI Insight 110, 102359 (2020).

    CAS  Google Scholar 

  50. Tikly, M., Burgin, S., Mohanlal, P., Bellingan, A. & George, J. Autoantibodies in black South Africans with systemic lupus erythematosus: spectrum and clinical associations. Clin. Rheumatol. 15, 143–147 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Alba, P. et al. Anti-dsDNA, anti-Sm antibodies, and the lupus anticoagulant: significant factors associated with lupus nephritis. Ann. Rheum. Dis. 62, 556–560 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ko, K., Koldobskaya, Y., Rosenzweig, E. & Niewold, T. B. Activation of the interferon pathway is dependent upon autoantibodies in African-American SLE patients, but not in European-American SLE patients. Front. Immunol. 4, 309 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Elbagir, S. et al. Sudanese and Swedish patients with systemic lupus erythematosus: immunological and clinical comparisons. Rheumatology 59, 968–978 (2020).

    Article  PubMed  Google Scholar 

  54. Riley, R. L., Addis, D. J. & Taylor, R. P. Stability of DNA/anti-DNA complexes. II. Salt lability and avidity. J. Immunol. 124, 1–7 (1980).

    CAS  PubMed  Google Scholar 

  55. Smeenk, R., van der Lelij, G. & Aarden, L. Avidity of antibodies to dsDNA: comparison of IFT on Crithidia luciliae, Farr assay, and PEG assay. J. Immunol. 128, 73–78 (1982).

    CAS  PubMed  Google Scholar 

  56. Smeenk, R. J., Van Rooijen, A. & Swaak, T. J. Dissociation studies of DNA/anti-DNA complexes in relation to anti-DNA avidity. J. Immunol. Methods 109, 27–35 (1988).

    Article  CAS  PubMed  Google Scholar 

  57. Haugbro, K., Nossent, J. C., Winkler, T., Figenschau, Y. & Rekvig, O. P. Anti-dsDNA antibodies and disease classification in antinuclear antibody positive patients: the role of analytical diversity. Ann. Rheum. Dis. 63, 386–394 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Compagno, M. et al. Clinical phenotype associations with various types of anti-dsDNA antibodies in patients with recent onset of rheumatic symptoms. Results from a multicentre observational study. Lupus Sci. Med. 1, e000007 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Pisetsky, D. S. Antinuclear antibodies in rheumatic disease: a proposal for a function-based classification. Scand. J. Immunol. 76, 223–228 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Mahajan, A., Herrmann, M. & Munoz, L. E. Clearance deficiency and cell death pathways: a model for the pathogenesis of SLE. Front. Immunol. 7, 35 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Elkon, K. B. Review: cell death, nucleic acids, and immunity: inflammation beyond the grave. Arthritis Rheumatol. 70, 805–816 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Al-Mayouf, S. M. et al. Loss-of-function variant in DNASE1L3 causes a familial form of systemic lupus erythematosus. Nat. Genet. 43, 1186–1188 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Sisirak, V. et al. Digestion of chromatin in apoptotic cell microparticles prevents autoimmunity. Cell 166, 88–101 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Soni, C. & Reizis, B. DNA as a self-antigen: nature and regulation. Curr. Opin. Immunol. 55, 31–37 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Weisenburger, T. et al. Epistatic interactions between mutations of deoxyribonuclease 1-like 3 and the inhibitory Fc gamma receptor IIB result in very early and massive autoantibodies against double-stranded DNA. Front. Immunol. 9, 1551 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Crow, Y. J. & Manel, N. Aicardi-Goutieres syndrome and the type I interferonopathies. Nat. Rev. Immunol. 15, 429–440 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Uggenti, C., Lepelley, A. & Crow, Y. J. Self-awareness: nucleic acid-driven inflammation and the type I interferonopathies. Annu. Rev. Immunol. 37, 247–267 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Nielsen, C. T. et al. Increased IgG on cell-derived plasma microparticles in systemic lupus erythematosus is associated with autoantibodies and complement activation. Arthritis Rheum. 64, 1227–1236 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Zirngibl, M. et al. Loading of nuclear autoantigens prototypically recognized by systemic lupus erythematosus sera into late apoptotic vesicles requires intact microtubules and myosin light chain kinase activity. Clin. Exp. Immunol. 179, 39–49 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Mobarrez, F. et al. Microparticles in the blood of patients with SLE: size, content of mitochondria and role in circulating immune complexes. J. Autoimmun. 102, 142–149 (2019).

    Article  CAS  PubMed  Google Scholar 

  71. Abrass, C. K., Nies, K. M., Louie, J. S., Border, W. A. & Glassock, R. J. Correlation and predictive accuracy of circulating immune complexes with disease activity in patients with systemic lupus erythematosus. Arthritis Rheum. 23, 273–282 (1980).

    Article  CAS  PubMed  Google Scholar 

  72. Lock, R. J. & Unsworth, D. J. Measurement of immune complexes is not useful in routine clinical practice. Ann. Clin. Biochem. 37, 253–261 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Wener, M. H. Tests for circulating immune complexes. Methods Mol. Biol. 1134, 47–57 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Putterman, C. et al. Cell-bound complement activation products in systemic lupus erythematosus: comparison with anti-double-stranded DNA and standard complement measurements. Lupus Sci. Med. 1, e000056 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Trouw, L. A., Pickering, M. C. & Blom, A. M. The complement system as a potential therapeutic target in rheumatic disease. Nat. Rev. Rheumatol. 13, 538–547 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Nowling, T. K. & Gilkeson, G. S. Mechanisms of tissue injury in lupus nephritis. Arthritis Res. Ther. 13, 250 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ho, A., Magder, L. S., Barr, S. G. & Petri, M. Decreases in anti-double-stranded DNA levels are associated with concurrent flares in patients with systemic lupus erythematosus. Arthritis Rheum. 44, 2342–2349 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Zykova, S. N., Tveita, A. A. & Rekvig, O. P. Renal Dnase1 enzyme activity and protein expression is selectively shut down in murine and human membranoproliferative lupus nephritis. PLoS One 5, 0012096 (2010).

    Article  CAS  Google Scholar 

  79. Pedersen, H. L. et al. Lupus nephritis: low urinary DNase I levels reflect loss of renal DNase I and may be utilized as a biomarker of disease progression. J. Pathol. Clin. Res. 4, 193–203 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vallin, H., Perers, A., Alm, G. V. & Ronnblom, L. Anti-double-stranded DNA antibodies and immunostimulatory plasmid DNA in combination mimic the endogenous IFN-alpha inducer in systemic lupus erythematosus. J. Immunol. 163, 6306–6313 (1999).

    CAS  PubMed  Google Scholar 

  81. Shrivastav, M. & Niewold, T. B. Nucleic acid sensors and type I interferon production in systemic lupus erythematosus. Front. Immunol. 4, 319 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Sharma, S., Fitzgerald, K. A., Cancro, M. P. & Marshak-Rothstein, A. Nucleic acid-sensing receptors: rheostats of autoimmunity and autoinflammation. J. Immunol. 195, 3507–3512 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Barrat, F. J., Elkon, K. B. & Fitzgerald, K. A. Importance of nucleic acid recognition in inflammation and autoimmunity. Annu. Rev. Med. 67, 323–336 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Li, T. & Chen, Z. J. The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer. J. Exp. Med. 215, 1287–1299 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lovgren, T., Eloranta, M. L., Bave, U., Alm, G. V. & Ronnblom, L. Induction of interferon-alpha production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. Arthritis Rheum. 50, 1861–1872 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Kirou, K. A. et al. Activation of the interferon-alpha pathway identifies a subgroup of systemic lupus erythematosus patients with distinct serologic features and active disease. Arthritis Rheum. 52, 1491–1503 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Weckerle, C. E. et al. Network analysis of associations between serum interferon-alpha activity, autoantibodies, and clinical features in systemic lupus erythematosus. Arthritis Rheum. 63, 1044–1053 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jackson, S. W. et al. Opposing impact of B cell-intrinsic TLR7 and TLR9 signals on autoantibody repertoire and systemic inflammation. J. Immunol. 192, 4525–4532 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Christensen, S. R. et al. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25, 417–428 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Tilstra, J. S. et al. B cell-intrinsic TLR9 expression is protective in murine lupus. J. Clin. Invest. 130, 3172–3187 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Garcia-Romo, G. S. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl Med. 3, 73ra20 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  93. van Dam, L. S. et al. Intrinsically distinct role of neutrophil extracellular trap formation in antineutrophil cytoplasmic antibody-associated vasculitis compared to systemic lupus erythematosus. Arthritis Rheumatol. 71, 2047–2058 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Gupta, S. & Kaplan, M. J. The role of neutrophils and NETosis in autoimmune and renal diseases. Nat. Rev. Nephrol. 12, 402–413 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Apel, F., Zychlinsky, A. & Kenny, E. F. The role of neutrophil extracellular traps in rheumatic diseases. Nat. Rev. Rheumatol. 14, 467–475 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Kowal, C. et al. Human lupus autoantibodies against NMDA receptors mediate cognitive impairment. Proc. Natl Acad. Sci. USA 103, 19854–19859 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nestor, J. et al. Lupus antibodies induce behavioral changes mediated by microglia and blocked by ACE inhibitors. J. Exp. Med. 215, 2554–2566 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Azzouz, D. et al. Lupus nephritis is linked to disease-activity associated expansions and immunity to a gut commensal. Ann. Rheum. Dis. 78, 947–956 (2019).

    Article  CAS  PubMed  Google Scholar 

  99. Silverman, G. J., Azzouz, D. F. & Alekseyenko, A. V. Systemic lupus erythematosus and dysbiosis in the microbiome: cause or effect or both? Curr. Opin. Immunol. 61, 80–85 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Diamond, B. & Lipsky, P. E. in Harrison’s Principles of Internal Medicine 20th edn, Ch. 348 (eds Jameson, J. L., Fauci, A. S., Kasper, D. L., Hauser, S. L., Longo, D. L. & Loscalzo, J.) 2510–2515 (McGraw-Hill Education 2018).

  101. Bombardier, C., Gladman, D. D., Urowitz, M. B., Caron, D. & Chang, C. H. Derivation of the SLEDAI. A disease activity index for lupus patients. The committee on prognosis studies in SLE. Arthritis Rheum. 35, 630–640 (1992).

    Article  CAS  PubMed  Google Scholar 

  102. Gladman, D. D., Ibanez, D. & Urowitz, M. B. Systemic lupus erythematosus disease activity index 2000. J. Rheumatol. 29, 288–291 (2002).

    PubMed  Google Scholar 

  103. St Clair, E. W., Burch, J. A. Jr, Ward, M. M., Keene, J. D. & Pisetsky, D. S. Temporal correlation of antibody responses to different epitopes of the human La autoantigen. J. Clin. Invest. 85, 515–521 (1990).

    Article  Google Scholar 

  104. Ferraccioli, G. & Houssiau, F. A. Which B-cell subset should we target in lupus? Ann. Rheum. Dis. 72, 1891–1892 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Tipton, C. M. et al. Diversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosus. Nat. Immunol. 16, 755–765 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hiepe, F. & Radbruch, A. Plasma cells as an innovative target in autoimmune disease with renal manifestations. Nat. Rev. Nephrol. 12, 232–240 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Tipton, C. M., Hom, J. R., Fucile, C. F., Rosenberg, A. F. & Sanz, I. Understanding B-cell activation and autoantibody repertoire selection in systemic lupus erythematosus: a B-cell immunomics approach. Immunol. Rev. 284, 120–131 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Stohl, W. et al. Belimumab reduces autoantibodies, normalizes low complement levels, and reduces select B cell populations in patients with systemic lupus erythematosus. Arthritis Rheum. 64, 2328–2337 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Amanna, I. J., Carlson, N. E. & Slifka, M. K. Duration of humoral immunity to common viral and vaccine antigens. N. Engl. J. Med. 357, 1903–1915 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Mannik, M., Merrill, C. E., Stamps, L. D. & Wener, M. H. Multiple autoantibodies form the glomerular immune deposits in patients with systemic lupus erythematosus. J. Rheumatol. 30, 1495–1504 (2003).

    PubMed  Google Scholar 

  111. Vilá, L. M. et al. Clinical and prognostic value of autoantibodies in Puerto Ricans with systemic lupus erythematosus. Lupus 15, 892–898 (2006).

    Article  PubMed  Google Scholar 

  112. Ahlin, E. et al. Autoantibodies associated with RNA are more enriched than anti-dsDNA antibodies in circulating immune complexes in SLE. Lupus 21, 586–595 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Arroyo-Avila, M. et al. Clinical associations of anti-Smith antibodies in PROFILE: a multi-ethnic lupus cohort. Clin. Rheumatol. 34, 1217–1223 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Maddison, P. J. & Reichlin, M. Deposition of antibodies to a soluble cytoplasmic antigen in the kidneys of patients with systemic lupus erythematosus. Arthritis Rheum. 22, 858–863 (1979).

    Article  CAS  PubMed  Google Scholar 

  115. Venables, P. J., Yi, T., Woodrow, D. F., Moss, J. & Maini, R. N. Relationship of precipitating antibodies to soluble cellular antigens and histologically defined renal lesions in systemic lupus erythematosus. Ann. Rheum. Dis. 42, 17–22 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Simmons-O’Brien, E. et al. One hundred anti-Ro (SS-A) antibody positive patients: a 10-year follow-up. Medicine 74, 109–130 (1995).

    Article  PubMed  Google Scholar 

  117. Barada, F. A. Jr, Andrews, B. S., Davis, J. S. IV & Taylor, R. P. Antibodies to Sm in patients with systemic lupus erythematosus. Correlation of Sm antibody titers with disease activity and other laboratory parameters. Arthritis Rheum. 24, 1236–1244 (1981).

    Article  PubMed  Google Scholar 

  118. Praprotnik, S., Bozic, B., Kveder, T. & Rozman, B. Fluctuation of anti-Ro/SS-A antibody levels in patients with systemic lupus erythematosus and Sjögren’s syndrome: a prospective study. Clin. Exp. Rheumatol. 17, 63–68 (1999).

    CAS  PubMed  Google Scholar 

  119. Tench, C. M. & Isenberg, D. A. The variation in anti-ENA characteristics between different ethnic populations with systemic lupus erythematosus over a 10-year period. Lupus 9, 374–376 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Faria, A. C., Barcellos, K. S. & Andrade, L. E. Longitudinal fluctuation of antibodies to extractable nuclear antigens in systemic lupus erythematosus. J. Rheumatol. 32, 1267–1272 (2005).

    CAS  PubMed  Google Scholar 

  121. Ippolito, A. et al. Autoantibodies in systemic lupus erythematosus: comparison of historical and current assessment of seropositivity. Lupus 20, 250–255 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Fisher, D. E., Reeves, W. H., Wisniewolski, R., Lahita, R. G. & Chiorazzi, N. Temporal shifts from Sm to ribonucleoprotein reactivity in systemic lupus erythematosus. Arthritis Rheum. 28, 1348–1355 (1985).

    Article  CAS  PubMed  Google Scholar 

  123. Butler, W. T. & Rossen, R. D. Effects of corticosteroids on immunity in man. I. Decreased serum IgG concentration caused by 3 or 5 days of high doses of methylprednisolone. J. Clin. Invest. 52, 2629–2640 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bijl, M., Horst, G., Bootsma, H., Limburg, P. C. & Kallenberg, C. G. Mycophenolate mofetil prevents a clinical relapse in patients with systemic lupus erythematosus at risk. Ann. Rheum. Dis. 62, 534–539 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ng, K. P. et al. B cell depletion therapy in systemic lupus erythematosus: long-term follow-up and predictors of response. Ann. Rheum. Dis. 66, 1259–1262 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tew, G. W. et al. Baseline autoantibody profiles predict normalization of complement and anti-dsDNA autoantibody levels following rituximab treatment in systemic lupus erythematosus. Lupus 19, 146–157 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Eickenberg, S. et al. Mycophenolic acid counteracts B cell proliferation and plasmablast formation in patients with systemic lupus erythematosus. Arthritis Res. Ther. 14, R110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lewis, M. J. et al. Autoantibodies targeting TLR and SMAD pathways define new subgroups in systemic lupus erythematosus. J. Autoimmun. 91, 1–12 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Pisetsky, D. S., Thompson, D. K., Wajdula, J., Diehl, A. & Sridharan, S. Variability in antinuclear antibody testing to assess patient eligibility for clinical trials of novel treatments for systemic lupus erythematosus. Arthritis Rheumatol. 71, 1534–1538 (2019).

    Article  CAS  PubMed  Google Scholar 

  130. Putterman, C. et al. The SLE-key test serological signature: new insights into the course of lupus. Rheumatology 57, 1632–1640 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. An, J., Minie, M., Sasaki, T., Woodward, J. J. & Elkon, K. B. Antimalarial drugs as immune modulators: new mechanisms for old drugs. Annu. Rev. Med. 68, 317–330 (2017).

    Article  CAS  PubMed  Google Scholar 

  132. Yurasov, S. et al. Defective B cell tolerance checkpoints in systemic lupus erythematosus. J. Exp. Med. 201, 703–711 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yurasov, S. et al. Persistent expression of autoantibodies in SLE patients in remission. J. Exp. Med. 203, 2255–2261 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Dorner, T. & Lipsky, P. E. B cells: depletion or functional modulation in rheumatic diseases. Curr. Opin. Rheumatol. 26, 228–236 (2014).

    Article  PubMed  Google Scholar 

  135. Suurmond, J. et al. Patterns of ANA+B cells for SLE patient stratification. JCI Insight 4, e127885 (2019).

    Article  PubMed Central  Google Scholar 

  136. Suurmond, J. et al. Loss of an IgG plasma cell checkpoint in patients with lupus. J. Allergy. Clin. Immunol. 143, 1586–1597 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. McMichael, A. J., Borrow, P., Tomaras, G. D., Goonetilleke, N. & Haynes, B. F. The immune response during acute HIV-1 infection: clues for vaccine development. Nat. Rev. Immunol. 10, 11–23 (2010).

    Article  CAS  PubMed  Google Scholar 

  138. Lee, J. et al. Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination. Nat. Med. 22, 1456–1464 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kaur, K. et al. High affinity antibodies against influenza characterize the plasmablast response in SLE patients after vaccination. PLoS One 10, e0125618 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The work of D.S.P. is supported by a Veterans Administration Merit Review grant and by a National Institutes for Health grant (1R01AR073935). The work of P.E.L. is supported by the RILITE Foundation.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to David S. Pisetsky.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Rheumatology thanks M. Aringer, M. Fritzler and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pisetsky, D.S., Lipsky, P.E. New insights into the role of antinuclear antibodies in systemic lupus erythematosus. Nat Rev Rheumatol 16, 565–579 (2020). https://doi.org/10.1038/s41584-020-0480-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-020-0480-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing