Article Text

Download PDFPDF

II-13 Suppression of systemic autoimmunity by the innate immune adaptor sting
  1. Shruti Sharma1,
  2. Allison M Campbell#2,
  3. Jennie Chan#1,
  4. Stefan A Schattgen#1,
  5. Gregory M Orlowski#1,
  6. Ribhu Nayar3,
  7. Annie H Huyler1,
  8. Kerstin Nündel4,
  9. Chandra Mohan5,
  10. Leslie J Berg3,
  11. Mark J Shlomchik6,
  12. Ann Marshak-Rothstein†4 and
  13. Katherine A Fitzgerald†1,7
  1. 1Program in Innate Immunity, Division of Infectious Diseases, Department of Medicine, University of Massachusetts Medical School, Worcester, MA-01605
  2. 2Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06519
  3. 3Department of Pathology, University of Massachusetts Medical School, Worcester, MA -01605
  4. 4Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
  5. 5Department of Immunology and Medicine, University of Texas Southwestern Medical Centre, Dallas, TX 75390
  6. 6Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
  7. 7Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7489 Trondheim, Norway
  8. ( # and contributed equally)


Background Cytosolic DNA-sensing pathways that signal via the adaptor Stimulator of Interferon Genes (STING) mediate immunity to pathogens and have also been known to promote autoimmune pathology in DNAseII/III-deficient mice. However, the role of these pathways in systemic models of autoimmunity is unexplored. We hypothesised that cytosolic DNA sensing pathways contribute to the pathogenesis of autoimmune disease. Surprisingly, we report here that STING potently suppresses inflammation in several models of systemic lupus erythematosus (SLE).

Materials and methods A controlled F2 intercross between heterozygote STING± lpr±littermates generated STING-deficient lupus-prone mice homozygous for deficiency in Fas as well as STING (STING/lpr, n10) or wild type for STING (WT/lpr, n 10). Mice were analysed at 16 wk of age. A similar F2 cross was set up for IRF3/ and MRL/lpr mice as well as STING/ and C57Bl/6lpr/lpr and analysed as above for STING/lpr mice (n 10 per group). C57BL/6, cGAS/, Unc93b3d/3d, and STING/ mice were injected i.p. with TMPD and evaluated at day 14 and 6 months post injection.

Results Lymphoid hypertrophy, autoantibody production, serum cytokine levels, and other indicators of immune activation were markedly increased in STING/ autoimmune-prone mice compared to STING+/+ littermates. As a result, STING/ autoimmune-prone mice had significantly shorter lifespans than controls. TLR-dependent systemic inflammation during TMPD-mediated peritonitis was similarly aggravated in STING/and cGAS/ mice. Mechanistically, cGAS and STING-deficient ?macrophages failed to express negative regulators of immune activation, and thus were hyper-responsive to TLR ligands. This hyper-reactivity corresponds to dramatically elevated numbers of inflammatory macrophages and granulocytes in vivo.

Conclusions Our findings reveal an unexpected negative regulatory role for STING during chronic inflammation. While the dysregulation of TLR7/9 signalling is a recurrent theme in systemic autoimmune, numerous studies have now revealed a protective role for TLR9 in SLE. Importantly, the exacerbated disease we observed in STING/lpr mice resembles that reported for TLR9/lpr mice and implies common protective mechanisms originating from STING and TLR9. Although the precise mechanism remains an open question, it is clear that cGAS/STING-dependent pathways maintain a threshold of negative regulators. We propose a similar setting of thresholds from TLR-dependent pathways and further suggest that such coordinated induction of cell-intrinsic thresholds of negative regulators is key in offsetting inflammation. Our data raise a cautionary note regarding the use of newly developed STING-directed therapeutics in systemic disease, because they may have unintended consequences and perturb a carefully orchestrated balance between cytosolic and endosomal signalling cascades.

Statistics from

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.